HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis

[1]  U. Certa,et al.  Increased HLA-DR expression and cortical demyelination in MS links with HLA-DR15 , 2019, Neurology: Neuroimmunology & Neuroinflammation.

[2]  S. Zamvil,et al.  B cells in autoimmune and neurodegenerative central nervous system diseases , 2019, Nature Reviews Neuroscience.

[3]  Simon C. Potter,et al.  Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility , 2019, Science.

[4]  H. Rammensee,et al.  The HLA Ligand Atlas. A resource of natural HLA ligands presented on benign tissues , 2019, bioRxiv.

[5]  S. Holdsworth,et al.  HLA-DR15-specific inhibition attenuates autoreactivity to the Goodpasture antigen. , 2019, Journal of autoimmunity.

[6]  P. Nilsson,et al.  Molecular mimicry between Anoctamin 2 and Epstein-Barr virus nuclear antigen 1 associates with multiple sclerosis risk , 2019, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Nitin J. Karandikar,et al.  Prevotella histicola, A Human Gut Commensal, Is as Potent as COPAXONE® in an Animal Model of Multiple Sclerosis , 2019, Front. Immunol..

[8]  Martin Eisenacher,et al.  The PRIDE database and related tools and resources in 2019: improving support for quantification data , 2018, Nucleic Acids Res..

[9]  H. Ullum,et al.  Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk , 2018, Cell.

[10]  Radleigh G. Santos,et al.  GDP-l-fucose synthase is a CD4+ T cell–specific autoantigen in DRB3*02:02 patients with multiple sclerosis , 2018, Science Translational Medicine.

[11]  Radleigh G. Santos,et al.  Memory B Cells Activate Brain-Homing, Autoreactive CD4+ T Cells in Multiple Sclerosis , 2018, Cell.

[12]  J. Greenbaum,et al.  Improved methods for predicting peptide binding affinity to MHC class II molecules , 2018, Immunology.

[13]  Hannes P. Eggertsson,et al.  DNA methylation as a mediator of HLA-DRB1*15:01 and a protective variant in multiple sclerosis , 2018, Nature Communications.

[14]  Jamie Rossjohn,et al.  CD4+ T cell–mediated HLA class II cross-restriction in HIV controllers , 2018, Science Immunology.

[15]  S. Garg,et al.  Methyldopa blocks MHC class II binding to disease-specific antigens in autoimmune diabetes , 2018, The Journal of clinical investigation.

[16]  Calliope A. Dendrou,et al.  HLA variation and disease , 2018, Nature Reviews Immunology.

[17]  David H. Miller,et al.  Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria , 2017, The Lancet Neurology.

[18]  H. Takayanagi,et al.  The Mechanisms of T Cell Selection in the Thymus. , 2017, Trends in immunology.

[19]  K. Berer,et al.  Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice , 2017, Proceedings of the National Academy of Sciences.

[20]  Stephen L. Hauser,et al.  Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models , 2017, Proceedings of the National Academy of Sciences.

[21]  X. Daura,et al.  Human Leukocyte Antigen (HLA)-DRB1*15:01 and HLA-DRB5*01:01 Present Complementary Peptide Repertoires , 2017, Front. Immunol..

[22]  Laura M Cox,et al.  Alterations of the human gut microbiome in multiple sclerosis , 2016, Nature Communications.

[23]  David S. Wishart,et al.  Heatmapper: web-enabled heat mapping for all , 2016, Nucleic Acids Res..

[24]  Stephanie A. Santorico,et al.  MHC class II super-enhancer increases surface expression of HLA-DR and HLA-DQ and affects cytokine production in autoimmune vitiligo , 2016, Proceedings of the National Academy of Sciences.

[25]  A. Bar-Or,et al.  Proinflammatory GM-CSF–producing B cells in multiple sclerosis and B cell depletion therapy , 2015, Science Translational Medicine.

[26]  Calliope A. Dendrou,et al.  Class II HLA interactions modulate genetic risk for multiple sclerosis , 2015, Nature Genetics.

[27]  W. Brück,et al.  Central role of Th2/Tc2 lymphocytes in pattern II multiple sclerosis lesions , 2015, Annals of clinical and translational neurology.

[28]  A. Rickinson,et al.  The immunology of Epstein-Barr virus-induced disease. , 2015, Annual review of immunology.

[29]  L. Klein,et al.  Positive and negative selection of the T cell repertoire: what thymocytes see (and don't see) , 2014, Nature Reviews Immunology.

[30]  T. Olsson,et al.  Cytomegalovirus seropositivity is negatively associated with multiple sclerosis , 2014, Multiple sclerosis.

[31]  R. Sobel,et al.  MHC class II–dependent B cell APC function is required for induction of CNS autoimmunity independent of myelin-specific antibodies , 2013, The Journal of experimental medicine.

[32]  R. Toes,et al.  A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis , 2013, The Journal of experimental medicine.

[33]  T. Forsthuber,et al.  Small Molecule Inhibitor of Antigen Binding and Presentation by HLA-DR2b as a Therapeutic Strategy for the Treatment of Multiple Sclerosis , 2013, The Journal of Immunology.

[34]  Nina Hillen,et al.  Exploring the MHC-peptide matrix of central tolerance in the human thymus , 2013, Nature Communications.

[35]  M. Okoniewski,et al.  HLA-DR15-derived self-peptides are involved in increased autologous T cell proliferation in multiple sclerosis. , 2013, Brain : a journal of neurology.

[36]  R. Planas,et al.  TCR Bias and HLA Cross-Restriction Are Strategies of Human Brain-Infiltrating JC Virus-Specific CD4+ T Cells during Viral Infection , 2012, The Journal of Immunology.

[37]  C. Pinilla,et al.  Myelin Basic Protein-Specific TCR/HLA-DRB5*01:01 Transgenic Mice Support the Etiologic Role of DRB5*01:01 in Multiple Sclerosis , 2012, The Journal of Immunology.

[38]  R. Planas,et al.  Natalizumab treatment perturbs memory‐ and marginal zone‐like B‐cell homing in secondary lymphoid organs in multiple sclerosis , 2012, European journal of immunology.

[39]  M. Cusick,et al.  Molecular Mimicry as a Mechanism of Autoimmune Disease , 2011, Clinical Reviews in Allergy & Immunology.

[40]  Simon C. Potter,et al.  Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis , 2011, Nature.

[41]  Alexander T. Dilthey,et al.  HLA*IMP - an integrated framework for imputing classical HLA alleles from SNP genotypes , 2011, Bioinform..

[42]  R. Simon,et al.  Combining positional scanning peptide libraries, HLA-DR transfectants and bioinformatics to dissect the epitope spectrum of HLA class II cross-restricted CD4+ T cell clones. , 2010, Journal of immunological methods.

[43]  K. Gevaert,et al.  Improved visualization of protein consensus sequences by iceLogo , 2009, Nature Methods.

[44]  J. Sprent,et al.  Homeostatic proliferation and survival of naïve and memory T cells , 2009, European journal of immunology.

[45]  B. Engelhardt,et al.  C-C chemokine receptor 6–regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE , 2009, Nature Immunology.

[46]  David Burgner,et al.  HLA and Infectious Diseases , 2009, Clinical Microbiology Reviews.

[47]  D. Bourdette,et al.  B-cell depletion with rituximab in relapsing-remitting multiple sclerosis , 2008, Current neurology and neuroscience reports.

[48]  S. Baranzini,et al.  Uncoupling the Roles of HLA-DRB1 and HLA-DRB5 Genes in Multiple Sclerosis1 , 2008, The Journal of Immunology.

[49]  Stephen L. Hauser,et al.  The genetics of multiple sclerosis: SNPs to pathways to pathogenesis , 2008, Nature Reviews Genetics.

[50]  Marie-Paule Lefranc,et al.  IMGT/V-QUEST: the highly customized and integrated system for IG and TR standardized V-J and V-D-J sequence analysis , 2008, Nucleic Acids Res..

[51]  D. Arnold,et al.  B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. , 2008, The New England journal of medicine.

[52]  J. Lünemann,et al.  Epstein-Barr Virus: Environmental Trigger of Multiple Sclerosis? , 2007, Journal of Virology.

[53]  D. Hafler,et al.  Multispecific responses by T cells expanded by endogenous self‐peptide/MHC complexes , 2007, European journal of immunology.

[54]  Lon R. Cardon,et al.  Functional epistasis on a common MHC haplotype associated with multiple sclerosis , 2006, Nature.

[55]  R. Simon,et al.  Redundancy in Antigen-Presenting Function of the HLA-DR and -DQ Molecules in the Multiple Sclerosis-Associated HLA-DR2 Haplotype1 , 2006, The Journal of Immunology.

[56]  Deric M. Park,et al.  HLA-DRB5*0101 and -DRB1*1501 expression in the multiple sclerosis-associated HLA-DR15 haplotype , 2005, Journal of Neuroimmunology.

[57]  Roland Martin,et al.  Structure of a human autoimmune TCR bound to a myelin basic protein self‐peptide and a multiple sclerosis‐associated MHC class II molecule , 2005, The EMBO journal.

[58]  Roland Martin,et al.  Immunology of multiple sclerosis. , 2005, Annual review of immunology.

[59]  Morgan Huse,et al.  Agonist/endogenous peptide–MHC heterodimers drive T cell activation and sensitivity , 2005, Nature.

[60]  R. Simon,et al.  Expansion and Functional Relevance of High-Avidity Myelin-Specific CD4+ T Cells in Multiple Sclerosis , 2004, The Journal of Immunology.

[61]  R. Germain,et al.  Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes , 2002, Nature.

[62]  Arne Svejgaard,et al.  A functional and structural basis for TCR cross-reactivity in multiple sclerosis , 2002, Nature Immunology.

[63]  M. Sospedra,et al.  Multiple sclerosis candidate autoantigens except myelin oligodendrocyte glycoprotein are transcribed in human thymus , 2002, European journal of immunology.

[64]  R Simon,et al.  Combinatorial Peptide Libraries and Biometric Score Matrices Permit the Quantitative Analysis of Specific and Degenerate Interactions Between Clonotypic TCR and MHC Peptide Ligands1 , 2001, The Journal of Immunology.

[65]  R. Mariuzza,et al.  Structural basis for the binding of an immunodominant peptide from myelin basic protein in different registers by two HLA-DR2 proteins. , 2000, Journal of molecular biology.

[66]  H. Ploegh,et al.  Proteolysis in MHC class II antigen presentation: who's in charge? , 2000, Immunity.

[67]  H. Weiner,et al.  CCR5(+) and CXCR3(+) T cells are increased in multiple sclerosis and their ligands MIP-1alpha and IP-10 are expressed in demyelinating brain lesions. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[68]  Don C. Wiley,et al.  Crystal Structure of HLA-DR2 (DRA*0101, DRB1*1501) Complexed with a Peptide from Human Myelin Basic Protein , 1998, The Journal of experimental medicine.

[69]  M F del Guercio,et al.  Several common HLA-DR types share largely overlapping peptide binding repertoires. , 1998, Journal of immunology.

[70]  B. Hemmer,et al.  Human T-cell response to myelin basic protein peptide (83-99): Extensive heterogeneity in antigen recognition, function, and phenotype , 1997, Neurology.

[71]  D E Banks,et al.  Immunodominance of a low-affinity major histocompatibility complex-binding myelin basic protein epitope (residues 111-129) in HLA-DR4 (B1*0401) subjects is associated with a restricted T cell receptor repertoire. , 1997, The Journal of clinical investigation.

[72]  J. Coligan,et al.  Modifications of peptide ligands enhancing T cell responsiveness imply large numbers of stimulatory ligands for autoreactive T cells. , 1997, Journal of immunology.

[73]  U. Utz,et al.  Differential activation of human autoreactive T cell clones by altered peptide ligands derived from myelin basic protein peptide (87–99) , 1996, European journal of immunology.

[74]  H. Baum,et al.  HLA association with autoimmune disease: restricted binding or T-cell selection? , 1995, The Lancet.

[75]  J. Hillert,et al.  The multiple sclerosis- and narcolepsy-associated HLA class II haplotype includes the DRB5*0101 allele. , 1995, Tissue antigens.

[76]  W. Ollier,et al.  Positive selection in autoimmunity: Abnormal immune responses to a bacterial dnaJ antigenic determinant in patients with early rheumatoid arthritis , 1995, Nature Medicine.

[77]  J. Strominger,et al.  Molecular mimicry in T cell-mediated autoimmunity: Viral peptides activate human T cell clones specific for myelin basic protein , 1995, Cell.

[78]  H. Rammensee,et al.  Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides. , 1994, Journal of immunology.

[79]  R A Houghten,et al.  Investigation of antigen-antibody interactions using a soluble, non-support-bound synthetic decapeptide library composed of four trillion (4 x 10(12) sequences. , 1994, The Biochemical journal.

[80]  C Oseroff,et al.  Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones , 1994, The Journal of experimental medicine.

[81]  William Arbuthnot Sir Lane,et al.  Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles , 1993, The Journal of experimental medicine.

[82]  William S. Lane,et al.  Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size , 1992, Nature.

[83]  A. Burroughs,et al.  Molecular mimicry in liver disease , 1992, Nature.

[84]  A. Rudensky,et al.  Sequence analysis of peptides bound to MHC class II molecules , 1991, Nature.

[85]  B. Mach,et al.  Oligonucleotide typing analysis for the linkage disequilibrium between the polymorphic DRB1 and DRB5 loci in DR2 haplotypes. , 1991, Tissue antigens.

[86]  Eric O Long,et al.  A myelin basic protein peptide is recognized by cytotoxic T cells in the context of four HLA-DR types associated with multiple sclerosis , 1991, The Journal of experimental medicine.

[87]  L. Kappos,et al.  Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple-sclerosis patients and healthy donors. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[88]  P. Parham,et al.  Cytotoxic T cell recognition of an endogenous class I HLA peptide presented by a class II HLA molecule , 1990, The Journal of experimental medicine.

[89]  D. Anderson,et al.  T cells sensitized to synthetic HLA-DR3 peptide give evidence of continuous presentation of denatured HLA-DR3 molecules by HLA-DP , 1989, The Journal of experimental medicine.

[90]  J. Claverie,et al.  MHC restriction, alloreactivity, and thymic education: A common link? , 1989, Cell.

[91]  P. Gregersen,et al.  The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. , 1987, Arthritis and rheumatism.

[92]  M. Feldmann,et al.  ROLE OF ABERRANT HLA-DR EXPRESSION AND ANTIGEN PRESENTATION IN INDUCTION OF ENDOCRINE AUTOIMMUNITY , 1983, The Lancet.

[93]  A. Svejgaard,et al.  Histocompatibility determinants in multiple sclerosis, with special reference to clinical course. , 1973, Lancet.

[94]  S. Stevanović,et al.  Purification and Identification of Naturally Presented MHC Class I and II Ligands. , 2019, Methods in molecular biology.

[95]  D. Reich,et al.  Multiple Sclerosis , 2018, The New England journal of medicine.

[96]  T. Olsson,et al.  Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis , 2017, Nature Reviews Neurology.

[97]  D. Scott,et al.  Avidity of human T cell receptor engineered CD4(+) T cells drives T-helper differentiation fate. , 2016, Cellular immunology.

[98]  Klaus-Armin Nave,et al.  Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells , 2000, Nature Medicine.

[99]  R. Hartzman,et al.  Diversity associated with the second expressed HLA-DRB locus in the human population , 1997, Immunogenetics.

[100]  V. Brusic,et al.  MHC molecular mimicry in diabetes , 1995, Nature Medicine.