Stacked Sequential Scale-SpaceTaylor Context

We analyze sequential image labeling methods that sample the posterior label field in order to gather contextual information. We propose an effective method that extracts local Taylor coefficients from the posterior at different scales. Results show that our proposal outperforms state-of-the-art methods on MSRC-21, CAMVID, eTRIMS8 and KAIST2 data sets.

[1]  Cristian Sminchisescu,et al.  Object Recognition by Sequential Figure-Ground Ranking , 2011, International Journal of Computer Vision.

[2]  Joost van de Weijer,et al.  Fusing Global and Local Scale for Semantic Image Segmentation , 2011 .

[3]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[4]  Peter Kontschieder,et al.  Structured class-labels in random forests for semantic image labelling , 2011, 2011 International Conference on Computer Vision.

[5]  Philip H. S. Torr,et al.  What, Where and How Many? Combining Object Detectors and CRFs , 2010, ECCV.

[6]  Vladlen Koltun,et al.  Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials , 2011, NIPS.

[7]  William W. Cohen,et al.  Stacked Sequential Learning , 2005, IJCAI.

[8]  Subhransu Maji,et al.  Efficient Classification for Additive Kernel SVMs , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Chih-Jen Lin,et al.  Combining SVMs with Various Feature Selection Strategies , 2006, Feature Extraction.

[10]  Roberto Cipolla,et al.  Semantic object classes in video: A high-definition ground truth database , 2009, Pattern Recognit. Lett..

[11]  Philip H. S. Torr,et al.  Combining Appearance and Structure from Motion Features for Road Scene Understanding , 2009, BMVC.

[12]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[13]  Hanspeter Pfister,et al.  Detection of Neuron Membranes in Electron Microscopy Images Using Multi-scale Context and Radon-Like Features , 2011, MICCAI.

[14]  Luc Van Gool,et al.  A Three-Layered Approach to Facade Parsing , 2012, ECCV.

[15]  Carlo Gatta,et al.  Multi-scale stacked sequential learning , 2009, Pattern Recognit..

[16]  Pascal Fua,et al.  Are spatial and global constraints really necessary for segmentation? , 2011, 2011 International Conference on Computer Vision.

[17]  Ruigang Yang,et al.  Semantic Segmentation of Urban Scenes Using Dense Depth Maps , 2010, ECCV.

[18]  Peter Kontschieder,et al.  Context-Sensitive Decision Forests for Object Detection , 2012, NIPS.

[19]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[20]  Sebastian Nowozin,et al.  Decision tree fields , 2011, 2011 International Conference on Computer Vision.

[21]  William W. Cohen,et al.  Stacked Graphical Models for Efficient Inference in Markov Random Fields , 2007, SDM.

[22]  Pushmeet Kohli,et al.  Associative hierarchical CRFs for object class image segmentation , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[23]  Pushmeet Kohli,et al.  Robust Higher Order Potentials for Enforcing Label Consistency , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[24]  Martial Hebert,et al.  Stacked Hierarchical Labeling , 2010, ECCV.

[25]  Zhuowen Tu,et al.  Auto-Context and Its Application to High-Level Vision Tasks and 3D Brain Image Segmentation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Wolfgang Förstner,et al.  A hierarchical conditional random field model for labeling and classifying images of man-made scenes , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[27]  Dimitris N. Metaxas,et al.  Entangled Decision Forests and Their Application for Semantic Segmentation of CT Images , 2011, IPMI.

[28]  Joachim Denzler,et al.  Semantic Segmentation with Millions of Features: Integrating Multiple Cues in a Combined Random Forest Approach , 2012, ACCV.

[29]  Jiayan Jiang,et al.  Efficient scale space auto-context for image segmentation and labeling , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Antonio Criminisi,et al.  TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context , 2007, International Journal of Computer Vision.

[31]  James Bailey,et al.  Feature Weighted SVMs Using Receiver Operating Characteristics , 2009, SDM.

[32]  Joost van de Weijer,et al.  Harmony Potentials , 2011, International Journal of Computer Vision.

[33]  Peter Kontschieder,et al.  Structured Local Predictors for image labelling , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[34]  C. V. Jawahar,et al.  Scene Text Recognition using Higher Order Language Priors , 2009, BMVC.

[35]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[36]  Bastian Leibe,et al.  Multi-Class Image Labeling with Top-Down Segmentation and Generalized Robust $P^N$ Potentials , 2011, BMVC.

[37]  Pushmeet Kohli,et al.  Graph Cut Based Inference with Co-occurrence Statistics , 2010, ECCV.

[38]  Sayan Mukherjee,et al.  Feature Selection for SVMs , 2000, NIPS.

[39]  Mei Han,et al.  A hierarchical conditional random field model for labeling and segmenting images of street scenes , 2011, CVPR 2011.

[40]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Svetlana Lazebnik,et al.  Finding Things: Image Parsing with Regions and Per-Exemplar Detectors , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Petia Radeva,et al.  A Meta-Learning Approach to Conditional Random Fields Using Error-Correcting Output Codes , 2010, 2010 20th International Conference on Pattern Recognition.

[43]  Max A. Viergever,et al.  The Gaussian scale-space paradigm and the multiscale local jet , 1996, International Journal of Computer Vision.