The Development of a Scanning Raman Water Vapor Lidar for Boundary Layer and Tropospheric Observations

Abstract A scanning, ultraviolet, Raman water vapor lidar designed primarily for boundary layer measurements has been built and operated by the Los Alamos National Laboratory Ground-Based Earth Observing Network team. The system provides high temporal and spatial resolution measurements of the atmosphere within and above the atmospheric boundary layer (ABL). Several examples of the types of data collected and the techniques for processing the data are presented. The typical horizontal range for the lidar is approximately 700 m when scanning, while the vertical range with photon counting can be up to 12 km with corresponding spatial resolutions of 1.5 m in the near field to 75 m in the far field. The uncertainty in the water vapor mixing ratio was found to be ±0.34 g kg−1. The development of the scanning Raman lidar is directed at questions about the behavior of the surface atmosphere interface. These questions address the nature of spatial variability and intermittent microscale convective transport in th...

[1]  E. F. Bradley,et al.  Bulk parameterization of air‐sea fluxes for Tropical Ocean‐Global Atmosphere Coupled‐Ocean Atmosphere Response Experiment , 1996 .

[2]  C. R. Quick,et al.  Derivation of water vapor fluxes from Lidar measurements , 1993 .

[3]  S. H. Melfi,et al.  Raman lidar system for the measurement of water vapor and aerosols in the Earth's atmosphere. , 1992, Applied optics.

[4]  Marc Parlange,et al.  The application of a scanning, water Raman-lidar as a probe of the atmospheric boundary layer , 1993, IEEE Trans. Geosci. Remote. Sens..

[5]  Humio Inaba,et al.  Laser-Raman radar —Laser-Raman scattering methods for remote detection and analysis of atmospheric pollution , 1972 .

[6]  D. Renaut,et al.  Daytime Raman-lidar measurements of water vapor. , 1980, Optics letters.

[7]  S. H. Melfi,et al.  OBSERVATION OF RAMAN SCATTERING BY WATER VAPOR IN THE ATMOSPHERE , 1969 .

[8]  William E. Eichinger,et al.  High-resolution properties of the Equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations , 1996 .

[9]  William E. Eichinger,et al.  Initial investigations of microscale cellular convection in an equatorial marine atmospheric boundary layer revealed by lidar , 1997 .

[10]  Anthony G Williams,et al.  Interactions between coherent eddies in the lower convective boundary layer , 1993 .

[11]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[12]  A. Ansmann,et al.  Measurement of atmospheric aerosol extinction profiles with a Raman lidar. , 1990, Optics letters.

[13]  E. Funck,et al.  Dead time effects from linear amplifiers and discriminators in single detector systems , 1986 .

[14]  D. Donovan,et al.  Correction for nonlinear photon-counting effects in lidar systems. , 1993, Applied optics.

[15]  G. Knoll Radiation detection and measurement , 1979 .

[16]  William B. Grant,et al.  Differential absorption and Raman lidar for water vapor profile measurements; A review , 1991 .

[17]  A. Ansmann,et al.  Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. , 1992, Applied optics.

[18]  J. Klett Lidar inversion with variable backscatter/extinction ratios. , 1985, Applied optics.

[19]  D. I. Cooper,et al.  The Combined Sensor Program: An Air-Sea Science Mission in the Central and Western Pacific Ocean , 1997 .

[20]  J. Cooney,et al.  Remote Measurements of Atmospheric Water Vapor Profiles Using the Raman Component of Laser Backscatter , 1970 .

[21]  David R. Miller,et al.  An interpretation of radiosonde errors in the atmospheric boundary layer , 1995 .

[22]  P. Teillet,et al.  Rayleigh optical depth comparisons from various sources. , 1990, Applied optics.

[23]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[24]  C. Kiemle,et al.  Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system. , 1993, Applied optics.

[25]  David N. Whiteman,et al.  Raman lidar measurements of Pinatubo aerosols over southeastern Kansas during November-December 1991 , 1992 .

[26]  Valentin Mitev,et al.  Humidity measurements in the free troposphere using Raman backscatter , 1988 .

[27]  W B Grant,et al.  Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols. , 1994, Applied optics.

[28]  Measurements of high resolution atmospheric water-vapor profiles by use of a solar blind Raman lidar. , 1985, Applied optics.

[29]  W. Brutsaert Evaporation into the atmosphere , 1982 .

[30]  David N. Whiteman,et al.  Observation of atmospheric fronts using Raman lidar moisture measurements , 1989 .

[31]  Lidar measurement of atmospheric aerosol extinction profiles: a comparison between two techniques-Klett inversion and pure rotational Raman scattering methods. , 1992, Applied optics.

[32]  E. David Hinkley,et al.  Laser monitoring of the atmosphere , 1976 .

[33]  D. Whiteman,et al.  Temperature sensitivity of an atmospheric Raman lidar system based on an XeF excimer laser. , 1993, Optics letters.

[34]  Raymond M. Measures,et al.  Laser remote sensing : fundamentals and applications , 1983 .

[35]  D. B. Holtkamp,et al.  Spatial variability of water vapor turbulent transfer within the boundary layer , 1992 .