Piezoresistive bond lines for timber construction monitoring—experimental scale-up

[1]  L. Mentrasti,et al.  Poisson's ratio bounds in orthotropic materials. Application to natural composites: wood, bamboo and Arundo donax , 2021 .

[2]  D. Chung,et al.  A critical review of piezoresistivity and its application in electrical-resistance-based strain sensing , 2020, Journal of Materials Science.

[3]  C. Winkler,et al.  Influence of polymer/filler composition and processing on the properties of multifunctional adhesive wood bonds from polyurethane prepolymers II: electrical sensitivity in compression , 2020, The Journal of Adhesion.

[4]  Qingshi Meng,et al.  Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: Experimental and numerical analysis , 2019, Composites Part A: Applied Science and Manufacturing.

[5]  Cedou Kumpenza,et al.  Measuring Poisson’s ratio: mechanical characterization of spruce wood by means of non-contact optical gauging techniques , 2018, Wood Science and Technology.

[6]  S. J. Peighambardoust,et al.  Electrically conductive nanocomposite adhesives based on epoxy resin filled with silver coated nanocarbon black , 2018, Journal of Materials Science: Materials in Electronics.

[7]  Leonel Paredes-Madrid,et al.  Underlying Physics of Conductive Polymer Composites and Force Sensing Resistors (FSRs). A Study on Creep Response and Dynamic Loading , 2017, Materials.

[8]  Peter Niemz,et al.  Holzphysik: Physik des Holzes und der Holzwerkstoffe , 2017 .

[9]  M. Abu-Abdeen,et al.  Effect of Temperature on Creep behavior of Poly(vinyl chloride) Loaded with Single Walled Carbon Nanotubes , 2016 .

[10]  R. Arndt,et al.  MONITORING OF MOISTURE CONTENT OF PROTECTED TIMBER BRIDGES , 2016 .

[11]  Irene Jansen,et al.  Increasing the Electrical Values of Polydimethylsiloxaneby the Integration of Carbon Black and Carbon Nanotubes:A Comparison of the Effect of Different Nanoscale Fillers. , 2015 .

[12]  B. Massoumi,et al.  Electrically conductive nanocomposite adhesives based on epoxy or chloroprene containing polyaniline, and carbon nanotubes , 2015, Journal of Materials Science: Materials in Electronics.

[13]  Jochen H. Kurz,et al.  Monitoring of timber structures , 2015 .

[14]  F. Wehnert,et al.  Design of multifunctional adhesives by the use of carbon nanoparticles , 2015 .

[15]  Christian Boller,et al.  Some background of monitoring and NDT also useful for timber structures , 2015 .

[16]  Markus Jahreis,et al.  DEVELOPMENT OF CONTINUOUS COMPOSITE JOINTS ON THE BASIS OF POLYMER MORTAR WITH MATCHED PROPERTIES , 2014 .

[17]  M. E. Muñoz,et al.  Electrically conductive adhesives with a focus on adhesives that contain carbon nanotubes , 2013 .

[18]  Kun Dai,et al.  A comparison between strain sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene electrically conductive composites , 2013 .

[19]  Thomas Tannert,et al.  In Situ Assessment of Structural Timber , 2011 .

[20]  Peng Wang,et al.  Creep of electrical resistance under uniaxial pressures for carbon black–silicone rubber composite , 2010 .

[21]  Steffen Franke,et al.  Strain analysis of wood components by close range photogrammetry , 2007 .

[22]  Mark J. Schulz,et al.  A carbon nanotube strain sensor for structural health monitoring , 2006 .

[23]  Tungyang Chen,et al.  Poisson's ratio for anisotropic elastic materials can have no bounds , 2005 .

[24]  Fu-Kuo Chang,et al.  Structural Health Monitoring , 2016 .

[25]  L. Filon On an approximate solution for the bending of a beam of rectangular cross-section under any system of load, with special reference to points of concentrated or discontinuous loading , 1902, Proceedings of the Royal Society of London.