Statistical Topology and the Random Interstellar Medium

Abstract We use topological methods to investigate the small-scale variation and local spatial characteristics of the interstellar medium (ISM) in three regions of the southern sky. We demonstrate that there are circumstances where topological methods can identify differences in distributions when conventional marginal or correlation analyses may not. We propose a nonparametric method for comparing two fields based on the counts of topological features and the geometry of the associated persistence diagrams. We investigate the expected distribution of topological structures quantified through Betti numbers under Gaussian random field (GRF) assumptions, which underlie many astrophysical models of the ISM. When we apply the methods to the astrophysical data, we find strong evidence that one of the three regions is both topologically dissimilar to the other two and not consistent with an underlying GRF model. This region is proximal to a region of recent star formation whereas the others are more distant. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.

[1]  A. Genz,et al.  Computation of Multivariate Normal and t Probabilities , 2009 .

[2]  V. Barnett The Ordering of Multivariate Data , 1976 .

[3]  A. Azzalini,et al.  The multivariate skew-normal distribution , 1996 .

[4]  B. Gibson,et al.  GASS: THE PARKES GALACTIC ALL-SKY SURVEY. I. SURVEY DESCRIPTION, GOALS, AND INITIAL DATA RELEASE , 2009, 0901.1159.

[5]  K. Ferrière The interstellar environment of our galaxy , 2001, astro-ph/0106359.

[6]  T. Murphy,et al.  GASS: The Parkes Galactic All-Sky Survey. II. Stray-Radiation Correction and Second Data Release , 2010, 1007.0686.

[7]  Arjun K. Gupta,et al.  A multivariate skew normal distribution , 2004 .

[8]  D. O. Astronomy,et al.  Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.

[9]  Frédéric Gosselin,et al.  Maxima of discretely sampled random fields, with an application to 'bubbles' , 2005 .

[10]  Kompaneets Model Fitting of the Orion-Eridanus Superbubble II: Thinking Outside of Barnard's Loop , 2016, 1606.02296.

[11]  C. Pichon,et al.  The persistent cosmic web and its filamentary structure II: Illustrations , 2010, 1009.4014.

[12]  École d'été de probabilités de Saint-Flour,et al.  Topological Complexity of Smooth Random Functions: École d'Été de Probabilités de Saint-Flour XXXIX-2009 , 2011 .

[13]  Robert J. Adler,et al.  Topological complexity of smooth random functions , 2011 .

[14]  Moo K. Chung,et al.  Topological Characterization of Signal in Brain Images Using Min-Max Diagrams , 2009, MICCAI.

[15]  P. Kalberla,et al.  GASS: The Parkes Galactic All-Sky Survey - Update: improved correction for instrumental effects and new data release , 2015, 1505.01011.

[16]  Copenhagen,et al.  Evidence for Filamentarity in the Las Campanas Redshift Survey , 1999, astro-ph/9904406.

[17]  Benjamin M. Tofflemire,et al.  INTERSTELLAR SONIC AND ALFVÉNIC MACH NUMBERS AND THE TSALLIS DISTRIBUTION , 2011, 1103.3299.

[18]  D. Burrows,et al.  A multiwavelength study of the eridanus soft X-ray enhancement , 1993 .

[19]  Konstantin Mischaikow,et al.  Analysis of Kolmogorov flow and Rayleigh–Bénard convection using persistent homology , 2015, 1505.06168.

[20]  On the filamentary environment of galaxies , 2009, 0910.1728.

[21]  G. Fritz,et al.  Soft X-ray emission in Eridanus: An old supernova remnant , 1976 .

[22]  P. Kalberla,et al.  The H i Distribution of the Milky Way , 2009 .

[23]  Herbert Edelsbrunner,et al.  The Topology of the Cosmic Web in Terms of Persistent Betti Numbers , 2016, 1608.04519.

[24]  A. Azzalini The Skew‐normal Distribution and Related Multivariate Families * , 2005 .

[25]  Sarang Joshi,et al.  Medical image analysis via frechet means of diffeomorphisms , 2008 .

[26]  Herbert Edelsbrunner,et al.  A Short Course in Computational Geometry and Topology , 2014 .

[27]  Mason A. Porter,et al.  A roadmap for the computation of persistent homology , 2015, EPJ Data Science.

[28]  T. Sousbie The persistent cosmic web and its filamentary structure I: Theory and implementation , 2010, 1009.4015.

[29]  B. Arnold Flexible univariate and multivariate models based on hidden truncation , 2009 .

[30]  G. Kowal,et al.  CHARACTERIZING MAGNETOHYDRODYNAMIC TURBULENCE IN THE SMALL MAGELLANIC CLOUD , 2009, 0911.3652.

[31]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[32]  Pratyush Pranav Persistent holes in the Universe : A hierarchical topology of the cosmic mass distribution , 2015 .

[33]  A. Szalay,et al.  The statistics of peaks of Gaussian random fields , 1986 .

[34]  R. Adler,et al.  Persistent homology for random fields and complexes , 2010, 1003.1001.

[35]  D. Yogeshwaran,et al.  On the topology of random complexes built over stationary point processes. , 2012, 1211.0061.

[36]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[37]  K. Menten,et al.  ATLASGAL -- A Galaxy-wide sample of dense filamentary structures , 2016, 1604.00544.

[38]  G. Kowal,et al.  Density Fluctuations in MHD Turbulence: Spectra, Intermittency, and Topology , 2006, astro-ph/0608051.

[39]  Moo K. Chung,et al.  Persistent Homology in Sparse Regression and Its Application to Brain Morphometry , 2014, IEEE Transactions on Medical Imaging.

[40]  Herbert Edelsbrunner,et al.  Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web , 2013, Trans. Comput. Sci..

[41]  J. Alves,et al.  KOMPANEETS MODEL FITTING OF THE ORION–ERIDANUS SUPERBUBBLE. II. THINKING OUTSIDE OF BARNARD’S LOOP , 2014, 1606.02296.

[42]  Robin Henderson,et al.  Joint modelling of repeated measurements and time-to-event outcomes: flexible model specification and exact likelihood inference , 2014, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[43]  Sivaraman Balakrishnan,et al.  Confidence sets for persistence diagrams , 2013, The Annals of Statistics.

[44]  A. Shukurov,et al.  3D morphology of a random field from its 2D cross-section , 2014, 1407.4048.

[45]  Anthony J. Hayter,et al.  The evaluation of general non‐centred orthant probabilities , 2003 .