The Two-Operon-Coded ABC Transporter Complex FpvWXYZCDEF is Required for Pseudomonas aeruginosa Growth and Virulence Under Iron-Limiting Conditions

[1]  P. Visca,et al.  Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection , 2016, Infection and Immunity.

[2]  Y. Iwasaki,et al.  Thiolated-2-methacryloyloxyethyl phosphorylcholine protected silver nanoparticles as novel photo-induced cell-killing agents. , 2016, Colloids and surfaces. B, Biointerfaces.

[3]  Yong-guan Zhu,et al.  Restoration of growth by manganese in a mutant strain of Escherichia coli lacking most known iron and manganese uptake systems , 2016, BioMetals.

[4]  H. Vogel,et al.  Bacterial ferrous iron transport: the Feo system. , 2016, FEMS microbiology reviews.

[5]  E. Murphy,et al.  Shigella Iron Acquisition Systems and their Regulation , 2016, Front. Cell. Infect. Microbiol..

[6]  C. Dozois,et al.  Interplay between iron homeostasis and virulence: Fur and RyhB as major regulators of bacterial pathogenicity. , 2015, Veterinary microbiology.

[7]  S. Payne,et al.  Regulation of iron transport systems in Enterobacteriaceae in response to oxygen and iron availability. , 2014, Journal of inorganic biochemistry.

[8]  N. Chim,et al.  Heme uptake in bacterial pathogens. , 2014, Current opinion in chemical biology.

[9]  E. Papoutsakis,et al.  Overexpression of fetA (ybbL) and fetB (ybbM), Encoding an Iron Exporter, Enhances Resistance to Oxidative Stress in Escherichia coli , 2013, Applied and Environmental Microbiology.

[10]  I. Schalk,et al.  Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways , 2013, Amino Acids.

[11]  L. Journet,et al.  An ABC transporter with two periplasmic binding proteins involved in iron acquisition in Pseudomonas aeruginosa. , 2012, ACS chemical biology.

[12]  K. Duan,et al.  PA2800 Plays an Important Role in Both Antibiotic Susceptibility and Virulence in Pseudomonas aeruginosa , 2012, Current Microbiology.

[13]  R. Perry,et al.  Yersiniabactin iron uptake: mechanisms and role in Yersinia pestis pathogenesis. , 2011, Microbes and infection.

[14]  S. Payne,et al.  The Vibrio cholerae VctPDGC system transports catechol siderophores and a siderophore‐free iron ligand , 2011, Molecular microbiology.

[15]  P. Cornelis,et al.  Iron homeostasis and management of oxidative stress response in bacteria. , 2011, Metallomics : integrated biometal science.

[16]  Xiaole Kong,et al.  Chemistry and Biology of Siderophores , 2010 .

[17]  A. Shanzer,et al.  The Ferrichrome Uptake Pathway in Pseudomonas aeruginosa Involves an Iron Release Mechanism with Acylation of the Siderophore and Recycling of the Modified Desferrichrome , 2010, Journal of bacteriology.

[18]  W. Bentley,et al.  Microarray analysis of Mycobacterium bovis BCG revealed induction of iron acquisition related genes in response to hydrogen peroxide. , 2009, Environmental science & technology.

[19]  Megan L. Boulette,et al.  Genetics and environmental regulation of Shigella iron transport systems , 2009, BioMetals.

[20]  Colin Ratledge,et al.  Characterization of five novel Pseudomonas aeruginosa cell‐surface signalling systems , 2007, Molecular microbiology.

[21]  F. Pattus,et al.  From the periplasmic signaling domain to the extracellular face of an outer membrane signal transducer of Pseudomonas aeruginosa: crystal structure of the ferric pyoverdine outer membrane receptor. , 2007, Journal of molecular biology.

[22]  M. Surette,et al.  Environmental Regulation of Pseudomonas aeruginosa PAO1 Las and Rhl Quorum-Sensing Systems , 2007, Journal of bacteriology.

[23]  S. Payne,et al.  Iron acquisition in Vibrio cholerae , 2007, BioMetals.

[24]  G. Cairo,et al.  A precious metal: Iron, an essential nutrient for all cells , 2006, Genes & Nutrition.

[25]  C. Dozois,et al.  A SitABCD homologue from an avian pathogenic Escherichia coli strain mediates transport of iron and manganese and resistance to hydrogen peroxide. , 2006, Microbiology.

[26]  I. Smith,et al.  Identification of an ABC Transporter Required for Iron Acquisition and Virulence in Mycobacterium tuberculosis , 2006, Journal of bacteriology.

[27]  William E Bentley,et al.  Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide , 2005, BMC Genomics.

[28]  M. O'Connell,et al.  Identification of rhtX and fptX, Novel Genes Encoding Proteins That Show Homology and Function in the Utilization of the Siderophores Rhizobactin 1021 by Sinorhizobium meliloti and Pyochelin by Pseudomonas aeruginosa, Respectively , 2004, Journal of bacteriology.

[29]  S. Worgall,et al.  Transcriptome analysis of the Pseudomonas aeruginosa response to iron , 2003, Archives of Microbiology.

[30]  C. Southward,et al.  Genomic Profiling of Iron-Responsive Genes in Salmonella enterica Serovar Typhimurium by High-Throughput Screening of a Random Promoter Library , 2003, Journal of bacteriology.

[31]  S. Andrews,et al.  Bacterial iron homeostasis. , 2003, FEMS microbiology reviews.

[32]  J. Ravel,et al.  Genomics of pyoverdine-mediated iron uptake in pseudomonads. , 2003, Trends in microbiology.

[33]  L. Björck,et al.  MtsABC Is Important for Manganese and Iron Transport, Oxidative Stress Resistance, and Virulence of Streptococcus pyogenes , 2003, Infection and Immunity.

[34]  L. Gómez,et al.  Pseudomonas aeruginosa pneumonia , 2003, Current opinion in infectious diseases.

[35]  M. Vasil,et al.  GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes , 2002, Molecular microbiology.

[36]  P. Visca,et al.  Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas , 2002, Molecular microbiology.

[37]  W. Köster ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. , 2001, Research in microbiology.

[38]  J. Kehrer The Haber-Weiss reaction and mechanisms of toxicity. , 2000, Toxicology.

[39]  R. Perry,et al.  YbtP and YbtQ: two ABC transporters required for iron uptake in Yersinia pestis , 1999, Molecular microbiology.

[40]  H. Schweizer,et al.  A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. , 1998, Gene.

[41]  V. Braun,et al.  ATP‐dependent ferric hydroxamate transport system in Escherichia coli: periplasmic FhuD interacts with a periplasmic and with a transmembrane/cytoplasmic region of the integral membrane protein FhuB, as revealed by competitive peptide mapping , 1997, Molecular microbiology.

[42]  B. Tümmler,et al.  Genomic mapping of Pseudomonas aeruginosa PAO. , 1994, Microbiology.

[43]  H. Schweizer,et al.  Two plasmids, X1918 and Z1918, for easy recovery of the xylE and lacZ reporter genes. , 1993, Gene.

[44]  M. Mcintosh,et al.  Nucleotide sequence and genetic organization of the ferric enterobactin transport system: homology to other peripiasmic binding protein‐dependent systems in Escherichia coli , 1991, Molecular microbiology.

[45]  V. Braun,et al.  Nucleotide sequences of the fecBCDE genes and locations of the proteins suggest a periplasmic-binding-protein-dependent transport mechanism for iron(III) dicitrate in Escherichia coli , 1989, Journal of bacteriology.

[46]  S. Linn,et al.  Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. , 1988, Science.

[47]  S. Payne,et al.  Iron-vibriobactin transport system is not required for virulence of Vibrio cholerae , 1985, Infection and immunity.

[48]  B. Halliwell,et al.  Oxygen toxicity, oxygen radicals, transition metals and disease. , 1984, The Biochemical journal.

[49]  G. Ditta,et al.  Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Kvach,et al.  Virulence-associated acquisition of iron in mammalian serum by Escherichia coli. , 1977, The Journal of infectious diseases.

[51]  P. Visca,et al.  Pyoverdine siderophores: from biogenesis to biosignificance. , 2007, Trends in microbiology.

[52]  H. Schweizer,et al.  Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. , 2000, Plasmid.

[53]  A. M. Kropinski,et al.  Genetic and sequence analysis of the cos region of the temperate Pseudomonas aeruginosa bacteriophage, D3. , 1996, Gene.