LTR-retrotransposons and MITEs: important players in the evolution of plant genomes.

Retrotransposons are an abundant and ancient component of plant genomes, yet recent evidence indicates that element activity in many modern plants is restricted to times of stress. Stress activation of plant retrotransposons may be a significant factor in somaclonal variation, in addition to providing an important means to isolate new active elements. Long terminal repeat retrotransposons and a second class of elements we have called miniature inverted-repeat transposable elements (MITEs) have recently been found to be associated with the genes of diverse plants where some contribute regulatory sequences. Because of their sequence diversity and small size, MITEs may be a valuable evolutionary tool for altering patterns of gene expression.

[1]  M. Grandbastien,et al.  Microbial elicitors of plant defence responses activate transcription of a retrotransposon , 1994 .

[2]  R. Flavell,et al.  A family of retrotransposons and associated genomic variation in wheat. , 1991, Genomics.

[3]  D. Garfinkel,et al.  Transpositional competence and transcription of endogenous Ty elements in Saccharomyces cerevisiae: implications for regulation of transposition , 1988, Molecular and cellular biology.

[4]  J. Bennetzen,et al.  Structure and coding properties of Bs1, a maize retrovirus-like transposon. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[5]  V. Walbot Strategies for Mutagenesis and Gene Cloning Using Transposon Tagging and T-DNA Insertional Mutagenesis , 1992 .

[6]  S. Briggs,et al.  Reductase activity encoded by the HM1 disease resistance gene in maize. , 1992, Science.

[7]  R. Phillips,et al.  Discovery of Transposable Element Activity Among Progeny of Tissue Culture—Derived Maize Plants , 1987, Science.

[8]  S. Wessler,et al.  The Effects of Plant Transposable Element Insertion on Transcription Initiation and RNA Processing , 1990 .

[9]  M. Caboche,et al.  Specific expression of the tobacco Tnt1 retrotransposon in protoplasts. , 1991, The EMBO journal.

[10]  P. A. Peterson Transposable Elements in Maize: Their Role in Creating Plant Genetic Variability , 1993 .

[11]  A. Flavell,et al.  Ty1-copia group retrotransposons are ubiquitous and heterogeneous in higher plants. , 1992, Nucleic acids research.

[12]  H. Will,et al.  Molecular biology of viral and nonviral retroelements. , 1989, Trends in genetics : TIG.

[13]  S. Wessler,et al.  Molecular evolution of magellan, a maize Ty3/gypsy-like retrotransposon. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[14]  N. Fedoroff,et al.  Inactivation of Maize Transposable Elements , 1994 .

[15]  J. Bennetzen,et al.  Integration and nonrandom mutation of a plasma membrane proton ATPase gene fragment within the Bs1 retroelement of maize. , 1994, The Plant cell.

[16]  S. Wessler,et al.  Tourist: a large family of small inverted repeat elements frequently associated with maize genes. , 1992, The Plant cell.

[17]  B. Osborne,et al.  Movers and shakers: maize transposons as tools for analyzing other plant genomes. , 1995, Current opinion in cell biology.

[18]  M. Matzke,et al.  Genomic imprinting in plants: parental effects and trans-inactivation phenomena , 1993 .

[19]  J. Boeke,et al.  Transcription and reverse transcription of retrotransposons. , 1989, Annual review of microbiology.

[20]  Albert Spielmann,et al.  Tnt1, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics , 1989, Nature.

[21]  M. Grandbastien,et al.  Characterisation of LTR sequences involved in the protoplast specific expression of the tobacco Tnt1 retrotransposon. , 1993, Nucleic acids research.

[22]  M. Grandbastien,et al.  Sequence variability within the tobacco retrotransposon Tnt1 population. , 1995, The EMBO journal.

[23]  M. Umeda,et al.  Characterization of a plant SINE, p-SINE1, in rice genomes. , 1992, Idengaku zasshi.

[24]  M Caboche,et al.  RNA‐mediated transposition of the tobacco retrotransposon Tnt1 in Arabidopsis thaliana. , 1995, The EMBO journal.

[25]  N. Okada,et al.  Molecular characterization of a short interspersed repetitive element from tobacco that exhibits sequence homology to specific tRNAs. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[26]  H. Hirochika Activation of tobacco retrotransposons during tissue culture. , 1993, The EMBO journal.

[27]  F. Vignols,et al.  The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. , 1995, The Plant cell.

[28]  H. Erfle,et al.  Automated DNA sequencing of the human HPRT locus. , 1990, Genomics.

[29]  V. Walbot,et al.  Characterization of the major transcripts encoded by the regulatory MuDR transposable element of maize. , 1995, Genetics.

[30]  J. S. Heslop-Harrison,et al.  Nuclear dna amounts in angiosperms. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[31]  R. Flavell Inactivation of gene expression in plants as a consequence of specific sequence duplication. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Wessler,et al.  Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. , 1994, The Plant cell.

[33]  R. Jorgensen The Germinal Inheritance of Epigenetic Information in Plants , 1993 .

[34]  M. Freeling,et al.  Transposon-induced promoter scrambling: a mechanism for the evolution of new alleles. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[35]  B. Mcclintock,et al.  The significance of responses of the genome to challenge. , 1984, Science.

[36]  S. Wessler,et al.  Transduction of a cellular gene by a plant retroelement , 1994, Cell.

[37]  H. Hirochika,et al.  Ty1-copia group retrotransposons as ubiquitous components of plant genomes. , 1993, Idengaku zasshi.

[38]  M. Giroux,et al.  De novo synthesis of an intron by the maize transposable element Dissociation. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Paszkowski Homologous Recombination and Gene Silencing in Plants , 2012, Springer Netherlands.

[40]  J. McDonald Transposable Elements and Evolution , 1993, Contemporary Issues in Genetics and Evolution.

[41]  D. Voytas,et al.  copia-like retrotransposons are ubiquitous among plants. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[42]  J. Bennetzen,et al.  Matrix attachment regions and transcribed sequences within a long chromosomal continuum containing maize Adh1. , 1995, The Plant cell.

[43]  W. Scowcroft Somaclonal Variation: The Myth of Clonal Uniformity , 1985 .

[44]  John F. McDonald,et al.  Eukaryotic transposable elements as mutagenic agents , 1988 .

[45]  S. Wessler,et al.  Retrotransposons in the flanking regions of normal plant genes: a role for copia-like elements in the evolution of gene structure and expression. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[46]  M. Freeling,et al.  A low copy number, copia‐like transposon in maize. , 1985, The EMBO journal.

[47]  H. Saedler,et al.  Molecular analysis of the En/Spm transposable element system of Zea mays , 1986, The EMBO journal.

[48]  I. Leitch,et al.  Nuclear DNA Amounts in Angiosperms , 1995 .

[49]  M J Varagona,et al.  Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. , 1992, The Plant cell.

[50]  S. Wessler,et al.  Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[51]  E. Dennis,et al.  Genetic Flux in Plants , 1985, Plant Gene Research.