Microwave conductivity studies on some semiconductors

The cavity perturbation technique is employed for the characterisation of semiconductors at microwave frequency for its conductivity. Temperature variation of microwave conductivity studies provide the information regarding the band gap, scattering parameter and impurity ionization energy. Change in the real part of the dielectric permittivity with conductivity indicates the change in the momentum relaxation time.

[1]  K. Cummings,et al.  Characterization of GaAs and Si by a microwave photoconductance technique , 1986 .

[2]  K. S. Champlin,et al.  Microwave techniques in the study of semiconductors , 1963 .

[3]  B. Nag,et al.  Measurement of Lifetime of Carriers in Semiconductors through Microwave Reflection , 1962 .

[4]  Carol Gray Montgomery,et al.  Technique of microwave measurements , 1947 .

[5]  F. Blatt,et al.  Physics of Electronic conduction in Solids , 1968 .

[6]  V. R. K. Murthy,et al.  A method for the evaluation of microwave dielectric and magnetic parameters using rectangular cavity perturbation technique , 1989 .

[7]  M. Kunst,et al.  Characterization of silicon wafers by transient microwave photoconductivity measurements , 1991 .

[8]  Sorab K. Ghandhi,et al.  Surface recombination velocity and lifetime in InP , 1991 .

[9]  M. Kunst,et al.  Contactless scanner for photoactive materials using laser‐induced microwave absorption , 1986 .

[10]  H. Jacobs,et al.  Microwave Techniques in Measurement of Lifetime in Germanium , 1959 .

[11]  H. Jacobs,et al.  Semiconductor conductivity measurements using a high‐sensitivity microwave technique , 1974 .

[12]  K. Kalikstein,et al.  Microwave Photoconductivity and Luminescence of ZnS and CdS Phosphors , 1972 .

[13]  J. Sobhanadri,et al.  Dielectric studies of some binary liquid mixtures using microwave cavity techniques , 1993 .

[14]  John M. Warman,et al.  Electronic processes in semiconductor materials studied by nanosecond time-resolved microwave conductivity. 1. Cadmium sulfide macroscopic crystal , 1989 .

[15]  P. E. Tannenwald,et al.  Measurement of Susceptibility Tensor in Ferrites , 1955 .

[16]  J. Sobhanadri,et al.  New approach of measuring the Q factor of a microwave cavity using the cavity perturbation technique , 1994 .

[17]  M. Kunst,et al.  Transport of excess carriers in silicon wafers , 1992 .

[18]  J. Sobhanadri,et al.  A new technique of measuring the complex dielectric permittivity of liquids at microwave frequencies , 1993 .

[19]  B. Ridley Quantum Processes in Semiconductors , 1982 .

[20]  H. Henisch,et al.  Contactless Method for the Estimation of Resistivity and Lifetime of Semiconductors , 1956 .

[21]  A. Ghosh,et al.  Hall mobility of polycrystalline silicon , 1980 .

[22]  渋谷 元一,et al.  F.J. Blatt: Physics of Electronic Conduction in Solids, McGraw-Hill Book Co., New York, 1968, 446頁, 15×23cm, 5,800円. , 1968 .

[23]  B Lehndorff An X-band microwave bridge for the measurement of complex permittivity , 1992 .

[24]  M. Chen Photoconductivity lifetime measurements on HgCdTe using a contactless microwave technique , 1988 .

[25]  W. Shockley,et al.  Microwave Observation of the Collision Frequency of Electrons in Germanium , 1953 .

[26]  K. S. Champlin,et al.  The Measurement of Conductivity and Permittivity of Semiconductor Spheres by an Extension of the Cavity Perturbation Method , 1961 .