Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facility

Fusion ignition experiments are planned to begin at the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)] using the indirect drive configuration [J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L, Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11, 339 (2004)]. Although the x-ray drive in this configuration is highly symmetric, energy is lost in the conversion process due to x-ray penetration into the hohlraum wall. To mitigate this loss, depleted uranium is incorporated into the traditional gold hohlraum to increase the efficiency of the laser to x-ray energy conversion by making the wall more opaque to the x rays [H. Nishumura, T. Endo, H. Shiraga, U. Kato, and S. Nakai, Appl. Phys. Lett. 62, 1344 (1993)]. Multilayered depleted uranium (DU) and gold hohlraums are deposited by sputtering by alternately rotating a hohlraum mold in front of separate DU and Au sources to build up multilayers to the ...

[1]  M. Rosen Fundamentals of ICF Hohlraums , 2005 .

[2]  M. Rosen,et al.  Proof of Principle experiments that demonstrate utility of cocktail hohlraums for indirect drive ignition , 2007 .

[3]  Leon Abelmann,et al.  Oblique evaporation and surface diffusion , 1997 .

[4]  Mordechay Schlesinger,et al.  Fundamentals of Electrochemical Deposition: Paunovic/Fundamentals of Electrochemical Deposition, Second Edition , 2006 .

[5]  M. Rosen The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial , 1999 .

[6]  O. Landen,et al.  The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .

[7]  David L. Windt,et al.  Microstructure of thin tantalum films sputtered onto inclined substrates: Experiments and atomistic simulations , 2003 .

[8]  Joshua E. Rothenberg,et al.  Exploring the limits of the National Ignition Facility’s capsule coupling , 2000 .

[9]  Porter,et al.  The Rosseland Mean Opacity of a Mixture of Gold and Gadolinium at High Temperatures. , 1996, Physical review letters.

[10]  M. Schlesinger,et al.  Fundamentals of Electrochemical Deposition , 1998 .

[11]  H. L. Wilkens,et al.  Progress in Coating Multi-Layered Cocktail Hohlraums , 2006 .

[12]  Webster Cash,et al.  Highly Reflective Uranium Mirrors for Astrophysics Applications , 2002, SPIE Optics + Photonics.

[13]  Hiroaki Nishimura,et al.  X‐ray emission from high‐Z mixture plasmas generated with intense blue laser light , 1993 .

[14]  Stephen D. Jacobs,et al.  Direct‐drive laser‐fusion experiments with the OMEGA, 60‐beam, >40 kJ, ultraviolet laser system , 1996 .

[15]  D. Colombant,et al.  Increase in Rosseland mean opacity for inertial fusion hohlraum walls , 1998 .

[16]  Ramon Joe Leeper,et al.  Time and spatially resolved measurements of x-ray burnthrough and re-emission in Au and Au:Dy:Nd foils , 2003 .