Co‐inertia analysis: an alternative method for studying species–environment relationships

SUMMARY 1Methods used for the study of species–environment relationships can be grouped into: (i) simple indirect and direct gradient analysis and multivariate direct gradient analysis (e.g. canonical correspondence analysis), all of which search for non-symmetric patterns between environmental data sets and species data sets; and (ii) analysis of juxtaposed tables, canonical correlation analysis, and intertable ordination, which examine species–environment relationships by considering each data set equally. Different analytical techniques are appropriate for fulfilling different objectives. 2We propose a method, co-inertia analysis, that can synthesize various approaches encountered in the ecological literature. Co-inertia analysis is based on the mathematically coherent Euclidean model and can be universally reproduced (i.e. independently of software) because of its numerical stability. The method performs simultaneous analysis of two tables. The optimizing criterion in co-inertia analysis is that the resulting sample scores (environmental scores and faunistic scores) are the most covariant. Such analysis is particularly suitable for the simultaneous detection of faunistic and environmental features in studies of ecosystem structure. 3The method was demonstrated using faunistic and environmental data from Friday (Freshwater Biology 18, 87-104, 1987). In this example, non-symmetric analyses is inappropriate because of the large number of variables (species and environmental variables) compared with the small number of samples. 4Co-inertia analysis is an extension of the analysis of cross tables previously attempted by others. It serves as a general method to relate any kinds of data set, using any kinds of standard analysis (e.g. principal components analysis, correspondence analysis, multiple correspondence analysis) or between-class and within-class analyses.

[1]  D. Goodall,et al.  Objective methods for the classification of vegetation. III. An essay in the use of factor analysis , 1954 .

[2]  L. Tucker An inter-battery method of factor analysis , 1958 .

[3]  D. J. Anderson The Structure of Some Upland Plant Communities in Caernarvonshire III. The Continuum Analysis , 1963 .

[4]  M. Brian Ant Distribution in a Southern English Heath , 1964 .

[5]  L'etude des Communautes Vegetales par L'analyse Statistique des Liaisons Entre les Especes et les Variables Ecologiques: Principes Fondamentaux , 1965 .

[6]  R. Whittaker,et al.  GRADIENT ANALYSIS OF VEGETATION* , 1967, Biological reviews of the Cambridge Philosophical Society.

[7]  À propos de quelques méthodes de classification en phytosociologie , 1967 .

[8]  M. Austin,et al.  An Ordination Study of a Chalk Grassland Community , 1968 .

[9]  J. Barkham,et al.  Multivariate Procedures in an Investigation of Vegetation and Soil Relations of Two Beech Woodlands, Cotswold Hills, England , 1970 .

[10]  Un Exemple D’utilisation de L’analyse Factorielle des Correspondances en Écologie Végétale , 1972 .

[11]  R. Cassie Fauna and sediments of an intertidal mud-flat: an alternative multivariate analysis , 1972 .

[12]  M. Hill Correspondence Analysis: A Neglected Multivariate Method , 1974 .

[13]  F. Cailliez,et al.  Introduction à l'analyse des données , 1976 .

[14]  M. Hill,et al.  Detrended correspondence analysis: an improved ordination technique , 1980 .

[15]  L'analyse de certains tableaux rectangulaires décomposés en blocs : généralisation des propriétés rencontrées dans l'étude des correspondances multiples. I. Définitions et applications à l'analyse canonique des variables qualitatives , 1980 .

[16]  B. Vincent Profondeur, vase et courant, facteurs de micro-répartition transversale du benthos dans l'estuaire d'eau douce du Saint-Laurent (Québec) , 1981 .

[17]  J. Lebreton,et al.  Breeding avifauna of a Mediterranean succession: the holm oak and cork oak series in the eastern Pyrenees, 1. Analysis and modelling of the structure gradient. , 1981 .

[18]  E. Depiereux,et al.  Utilisation critique de l'analyse en composantes principales et du cluster analysis pour la description d'échantillons d'invertébrés benthiques en eau douce@@@Utilisation critique de l'analyse en composantes principales et du cluster analysis pour la description d'echantillons d'invertebres benthiqu , 1983 .

[19]  Mike T. Furse,et al.  A preliminary classification of running‐water sites in Great Britain based on macro‐invertebrate species and the prediction of community type using environmental data , 1984 .

[20]  J. Gower Multivariate analysis : Ordination, multidimensional scaling and allied topics , 1984 .

[21]  R. Gittins,et al.  Canonical Analysis: A Review with Applications in Ecology , 1985 .

[22]  C. Braak Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient Analysis , 1986 .

[23]  László Orlóci,et al.  Applying Metric and Nonmetric Multidimensional Scaling to Ecological Studies: Some New Results , 1986 .

[24]  H. Gauch,et al.  Multivariate analysis of plant communities and environmental factors in Ngari, Tibet , 1986 .

[25]  Y. Escoufier,et al.  The Duality Diagram: A Means for Better Practical Applications , 1987 .

[26]  D. Chessel,et al.  Propriétés de l'analyse canonique des correspondances; une illustration en hydrobiologie , 1987 .

[27]  C.J.F. ter Braak,et al.  The analysis of vegetation-environment relationships by canonical correspondence analysis , 1987 .

[28]  Robert Sabatier Analyse factorielle de données structurées et métriques , 1987 .

[29]  S. Ormerod,et al.  The impact of acidification on macroinvertebrate assemblages in welsh streams: towards an empirical model. , 1987, Environmental pollution.

[30]  L. Friday The diversity of macro invertebrate and macrophyte communities in ponds , 1987 .

[31]  John C. Gower,et al.  Introduction to Ordination Techniques , 1987 .

[32]  L. Corkum Use of Alternative Classifications in Studying Broad-Scale Distributional Patterns of Lotic Invertebrates , 1988, Journal of the North American Benthological Society.

[33]  R. Prodon Dynamique des systemes avifaune : vegetation apres deprise rurale et incendies dans les pyrenees mediterraneennes silicieuses , 1988 .

[34]  A. Höskuldsson PLS regression methods , 1988 .

[35]  Daniel P. Faith,et al.  Correlation of environmental variables with patterns of distribution and abundance of common and rare freshwater macroinvertebrates , 1989 .

[36]  Richard K. Johnson,et al.  Classification and ordination of profundal macroinvertebrate communities in nutrient poor, oligo‐mesohumic lakes in relation to environmental data , 1989 .

[37]  Sabatier Robert,et al.  Principal component analysis with instrumental variables as a tool for modelling composition data Daniel , 1989 .

[38]  Correspondence Analysis of species by environmental variable matrices , 1990 .

[39]  S. Bunn,et al.  Classification of the macroinvertebrate fauna of two river systems in Southwestern Australia in relation to physical and chemical parameters , 1990 .

[40]  Lee Belbin,et al.  Semi‐strong Hybrid Scaling, a new ordination algorithm , 1991 .

[41]  G. Banco,et al.  Principal Component and Correspondence Analyses with Respect to Instrumental Variables : An Overview of Their Role in Studies of Structure - Activity and Species - Environment Relationships , 1991 .

[42]  Pascal Mercier Etude des relations espèces-environnement et analyse de la co-structure d'un couple de tableaux , 1991 .

[43]  Complete correspondence analysis of an ecological profile data table : a central ordination method , 1992 .

[44]  P. Usseglio-Polatera,et al.  An approach to the synthesis of qualitative ecological information from aquatic Coleoptera communities , 1992 .

[45]  S. Wold,et al.  The kernel algorithm for PLS , 1993 .

[46]  C. Townsend,et al.  Species traits in relation to a habitat templet for river systems , 1994 .