Approximation of Elliptic Control Problems in Measure Spaces with Sparse Solutions

Optimal control problems in measure spaces governed by elliptic equations are considered for distributed and Neumann boundary control, which are known to promote sparse solutions. Optimality conditions are derived and some of the structural properties of their solutions, in particular sparsity, are discussed. A framework for their approximation is proposed which is efficient for numerical computations and for which we prove convergence and provide error estimates.

[1]  Jianghai Hu,et al.  Stability of Discrete-Time Switched Homogeneous Systems on Cones and Conewise Homogeneous Inclusions , 2012, SIAM J. Control. Optim..

[2]  R. Cooke Real and Complex Analysis , 2011 .

[3]  Georg Stadler,et al.  Elliptic optimal control problems with L1-control cost and applications for the placement of control devices , 2009, Comput. Optim. Appl..

[4]  W. Rudin Real and complex analysis , 1968 .

[5]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[6]  Bernt Øksendal,et al.  Singular Stochastic Control and Optimal Stopping with Partial Information of Itô-Lévy Processes , 2012, SIAM J. Control. Optim..

[7]  E. Casas L2 estimates for the finite element method for the Dirichlet problem with singular data , 1985 .

[8]  Jen-Chih Yao,et al.  A Unified Hybrid Iterative Method for Solving Variational Inequalities Involving Generalized Pseudocontractive Mappings , 2012, SIAM J. Control. Optim..

[9]  B. Kummer Newton’s Method Based on Generalized Derivatives for Nonsmooth Functions: Convergence Analysis , 1992 .

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  Gerd Wachsmuth,et al.  Convergence and regularization results for optimal control problems with sparsity functional , 2011 .

[12]  Roland Herzog,et al.  Optimality Conditions and Error Analysis of Semilinear Elliptic Control Problems with L1 Cost Functional , 2012, SIAM J. Optim..

[13]  K. Bredies,et al.  Inverse problems in spaces of measures , 2013 .

[14]  Karl Kunisch,et al.  A measure space approach to optimal source placement , 2012, Comput. Optim. Appl..

[15]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[16]  Chong Li,et al.  Variational Inequalities for Set-Valued Vector Fields on Riemannian Manifolds: Convexity of the Solution Set and the Proximal Point Algorithm , 2012, SIAM J. Control. Optim..

[17]  E. Casas Control of an elliptic problem with pointwise state constraints , 1986 .

[18]  Erlend Grong,et al.  Controllability of Rolling without Twisting or Slipping in Higher Dimensions , 2011, SIAM J. Control. Optim..

[19]  Michael Margaliot,et al.  A Maximum Principle for the Stability Analysis of Positive Bilinear Control Systems with Applications to Positive Linear Switched Systems , 2012, SIAM J. Control. Optim..

[20]  Ying Longan INFINITE ELEMENT METHOD FOR ELLIPTIC PROBLEMS , 1991 .

[21]  Ji-Feng Zhang,et al.  Mean Field Games for Large-Population Multiagent Systems with Markov Jump Parameters , 2012, SIAM J. Control. Optim..

[22]  Nadir Arada,et al.  Optimal Control of Shear-Thinning Fluids , 2012, SIAM J. Control. Optim..

[23]  Hiroaki Hata,et al.  On the Hamilton-Jacobi-Bellman Equation for an Optimal Consumption Problem: II. Verification Theorem , 2012, SIAM J. Control. Optim..

[24]  Catherine Donnelly,et al.  Quadratic Risk Minimization in a Regime-Switching Model with Portfolio Constraints , 2012, SIAM J. Control. Optim..

[25]  K. Kunisch,et al.  A duality-based approach to elliptic control problems in non-reflexive Banach spaces , 2011 .

[26]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[27]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[28]  Hiroaki Hata,et al.  On the Hamilton-Jacobi-Bellman Equation for an Optimal Consumption Problem: I. Existence of Solution , 2012, SIAM J. Control. Optim..