TRANSIT TIMING OBSERVATIONS FROM KEPLER. II. CONFIRMATION OF TWO MULTIPLANET SYSTEMS VIA A NON-PARAMETRIC CORRELATION ANALYSIS

We present a new method for confirming transiting planets based on the combination of transit timing variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair of bodies is in the same physical system. Orbital stability provides upper limits for the masses of the transiting companions that are in the planetary regime. This paper describes a non-parametric technique for quantifying the statistical significance of TTVs based on the correlation of two TTV data sets. We apply this method to an analysis of the TTVs of two stars with multiple transiting planet candidates identified by Kepler. We confirm four transiting planets in two multiple-planet systems based on their TTVs and the constraints imposed by dynamical stability. An additional three candidates in these same systems are not confirmed as planets, but are likely to be validated as real planets once further observations and analyses are possible. If all were confirmed, these systems would be near 4:6:9 and 2:4:6:9 period commensurabilities. Our results demonstrate that TTVs provide a powerful tool for confirming transiting planets, including low-mass planets and planets around faint stars for which Doppler follow-up is not practical with existing facilities. Continued Kepler observations will dramatically improve the constraints on the planet masses and orbits and provide sensitivity for detecting additional non-transiting planets. If Kepler observations were extended to eight years, then a similar analysis could likely confirm systems with multiple closely spaced, small transiting planets in or near the habitable zone of solar-type stars.

Howard Isaacson | Debra A. Fischer | Phillip J. MacQueen | NOAO | David Charbonneau | William F. Welsh | SETI Institute | Peter Tenenbaum | Jon M. Jenkins | Santa Barbara | Stephen T. Bryson | Joseph D. Twicken | Avi Shporer | Jason H. Steffen | Eric B. Ford | University of California | William J. Borucki | David G. Koch | Natalie M. Batalha | Douglas A. Caldwell | Berkeley | Michael R. Haas | Jack J. Lissauer | Bruce D. Clarke | Susan E. Thompson | Steve B. Howell | Francois Fressin | Mark E. Everett | Darin Ragozzine | Sean McCauliff | Christopher Allen | Jason F. Rowe | Samuel N. Quinn | Guillermo Torres | Daniel C. Fabrycky | Martin Still | William D. Cochran | Robert C. Morehead | University of Hertfordshire | Yale University | David W. Latham | Las Cumbres Observatory Global Telescope | Harvard-Smithsonian Center for Astrophysics | Geoffrey W. Marcy | Althea V. Moorhead | Christopher J. Burke | StSci | Matthew J. Holman | San Diego State University | Elisa Quintana | NASA Ames | Elliott Horch | Khadeejah A. Ibrahim | Lars A. Buchhave | U. California | Hubble Fellow | F. Fressin | E. Ford | F. Mullally | Avi Shporer | M. Holman | Stsci | J. Lissauer | R. Gilliland | M. Everett | N. Ames | U. Hertfordshire | P. Tenenbaum | L. Buchhave | D. Latham | S. Thompson | D. Charbonneau | G. Marcy | H. Isaacson | J. Rowe | J. Jenkins | S. Bryson | S. Howell | T. Gautier | N. Batalha | D. Fischer | S. Quinn | W. Borucki | D. Koch | D. Caldwell | C. Burke | W. Cochran | M. Endl | P. MacQueen | G. Torres | J. Steffen | D. Fabrycky | P. Lucas | W. Welsh | E. Quintana | M. Still | J. Twicken | J. D'esert | J. Carter | Jie Li | S. McCauliff | B. Clarke | R. C. Morehead | D. Ragozzine | S. Institute | F. C. F. P. Astrophysics | K. Ibrahim | Bay Area Environmental Research InstituteNASA Ames Res Center | Niels Bohr Institute | Natural History Museum of Denmark | M. Observatory | Orbital Sciences CorporationNASA Ames Research Center | E. Horch | A. Moorhead | C. Allen | Noao | UCOLick Observatory | Santa Barbara | Jean-Michel D'esert | Michael Endl | JPLCaltech | Thomas N. Gautier | Joshua A. Carter | UCOLick Observatory | Hubble Fellow | Ron L. Gilliland | Jie Li | Philip Lucas | Fergal R. Mullally | San Jose State University | P. Macqueen | Bill Wohler University of Florida | Fermilab Center for Particle Astrophysics | McDonald Observatory | Southern Connecticut State University | M. Haas | H. C. F. Astrophysics | Yale University | B. A. E. R. I. A. R. Center | O. Center

[1]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[2]  W. Press,et al.  Interpolation, realization, and reconstruction of noisy, irregularly sampled data , 1992 .

[3]  Drake Deming,et al.  THE HOT-JUPITER KEPLER-17b: DISCOVERY, OBLIQUITY FROM STROBOSCOPIC STARSPOTS, AND ATMOSPHERIC CHARACTERIZATION , 2011, 1107.5750.

[4]  M. R. Haas,et al.  A closely packed system of low-mass, low-density planets transiting Kepler-11 , 2011, Nature.

[5]  William F. Welsh,et al.  KEPLER MISSION STELLAR AND INSTRUMENT NOISE PROPERTIES , 2011, 1107.5207.

[6]  M. R. Haas,et al.  TRANSIT TIMING OBSERVATIONS FROM KEPLER. IV. CONFIRMATION OF FOUR MULTIPLE-PLANET SYSTEMS BY SIMPLE PHYSICAL MODELS , 2012, 1201.5415.

[7]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[8]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[9]  F. Fressin,et al.  CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA , 2011, 1102.0541.

[10]  Howard Isaacson,et al.  KEPLER-18b, c, AND d: A SYSTEM OF THREE PLANETS CONFIRMED BY TRANSIT TIMING VARIATIONS, LIGHT CURVE VALIDATION, WARM-SPITZER PHOTOMETRY, AND RADIAL VELOCITY MEASUREMENTS , 2011, 1110.0820.

[11]  Batavia,et al.  Transit timing observations from Kepler - III. : Confirmation of four multiple planet systems by a Fourier-domain study of anticorrelated transit timing variations , 2012, 1201.5412.

[12]  John Asher Johnson,et al.  ON THE LOW FALSE POSITIVE PROBABILITIES OF KEPLER PLANET CANDIDATES , 2011, 1101.5630.

[13]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[14]  R. Nelson,et al.  Three-dimensional simulations of multiple protoplanets embedded in a protostellar disc , 2008, 0811.4322.

[15]  Jon M. Jenkins,et al.  ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS , 2011, 1102.0543.

[16]  Howard Isaacson,et al.  Kepler-9: A System of Multiple Planets Transiting a Sun-Like Star, Confirmed by Timing Variations , 2010, Science.

[17]  D. Ciardi,et al.  SPECKLE CAMERA OBSERVATIONS FOR THE NASA KEPLER MISSION FOLLOW-UP PROGRAM , 2011 .

[18]  Howard Isaacson,et al.  MODELING KEPLER TRANSIT LIGHT CURVES AS FALSE POSITIVES: REJECTION OF BLEND SCENARIOS FOR KEPLER-9, AND VALIDATION OF KEPLER-9 d, A SUPER-EARTH-SIZE PLANET IN A MULTIPLE SYSTEM , 2010, 1008.4393.

[19]  Jie Li,et al.  THE DISTRIBUTION OF TRANSIT DURATIONS FOR KEPLER PLANET CANDIDATES AND IMPLICATIONS FOR THEIR ORBITAL ECCENTRICITIES , 2011, 1102.0547.

[20]  Y.-W. Lee,et al.  Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture , 2001 .

[21]  Pierre Le Sidaner,et al.  Defining and cataloging exoplanets: the exoplanet.eu database , 2011, 1106.0586.

[22]  F. Fressin,et al.  FIVE KEPLER TARGET STARS THAT SHOW MULTIPLE TRANSITING EXOPLANET CANDIDATES , 2010, 1006.2763.

[23]  K. Kinemuchi,et al.  ALMOST ALL OF KEPLER'S MULTIPLE-PLANET CANDIDATES ARE PLANETS , 2012, 1201.5424.

[24]  M. R. Haas,et al.  Kepler Mission Design, Realized Photometric Performance, and Early Science , 2010, 1001.0268.

[25]  Timothy M. Brown,et al.  KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION , 2011, 1102.0342.

[26]  Peter Tenenbaum,et al.  TRANSIT TIMING OBSERVATIONS FROM KEPLER. I. STATISTICAL ANALYSIS OF THE FIRST FOUR MONTHS , 2011, 1102.0544.

[27]  Austin,et al.  KEPLER'S FIRST ROCKY PLANET: KEPLER-10b , 2011, 1102.0605.

[28]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[29]  Eric B. Ford,et al.  Using Transit Timing Observations to Search for Trojans of Transiting Extrasolar Planets , 2007, 0705.0356.

[30]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[31]  Jong-Hak Woo,et al.  Y2 Isochrones with an Improved Core Overshoot Treatment , 2004 .

[32]  E. Ford,et al.  A FIRST COMPARISON OF KEPLER PLANET CANDIDATES IN SINGLE AND MULTIPLE SYSTEMS , 2011, 1103.3896.

[33]  M. Holman,et al.  The Value of Systems with Multiple Transiting Planets , 2010, 1006.3727.

[34]  E. Ford,et al.  QUANTIFYING THE CHALLENGES OF DETECTING UNSEEN PLANETARY COMPANIONS WITH TRANSIT TIMING VARIATIONS , 2010, 1011.1466.

[35]  R. Nelson,et al.  On the evolution of multiple protoplanets embedded in a protostellar disc , 2006 .

[36]  A. Youdin THE EXOPLANET CENSUS: A GENERAL METHOD APPLIED TO KEPLER , 2011, 1105.1782.

[37]  D. Ciardi,et al.  OBSERVATIONS OF BINARY STARS WITH THE DIFFERENTIAL SPECKLE SURVEY INSTRUMENT. III. MEASURES BELOW THE DIFFRACTION LIMIT OF THE WIYN TELESCOPE , 2011 .

[38]  K. Kinemuchi,et al.  KEPLER-10 c: A 2.2 EARTH RADIUS TRANSITING PLANET IN A MULTIPLE SYSTEM , 2011, 1105.4647.

[39]  E. Ford,et al.  BENEFITS OF GROUND-BASED PHOTOMETRIC FOLLOW-UP FOR TRANSITING EXTRASOLAR PLANETS DISCOVERED WITH KEPLER AND CoRoT , 2009, 0907.5193.