Comparative analysis of MACROD1, MACROD2 and TARG1 expression, localisation and interactome

[1]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[2]  M. Niepel,et al.  Enabling drug discovery for the PARP protein family through the detection of mono-ADP-ribosylation. , 2019, Biochemical pharmacology.

[3]  Michael S. Cohen,et al.  Reversible ADP-ribosylation of RNA , 2019, Nucleic acids research.

[4]  Bin Zhang,et al.  15 years of PhosphoSitePlus®: integrating post-translationally modified sites, disease variants and isoforms , 2018, Nucleic Acids Res..

[5]  Alan J. Robinson,et al.  MitoMiner v4.0: an updated database of mitochondrial localization evidence, phenotypes and diseases , 2018, Nucleic Acids Res..

[6]  K. Nagata,et al.  Biochemical and Morphological Characterization of a Neurodevelopmental Disorder-Related Mono-ADP-Ribosylhydrolase, MACRO Domain Containing 2 , 2018, Developmental Neuroscience.

[7]  Ping Liu,et al.  PARP12 suppresses Zika virus infection through PARP-dependent degradation of NS1 and NS3 viral proteins , 2018, Science Signaling.

[8]  Robert D. Finn,et al.  HMMER web server: 2018 update , 2018, Nucleic Acids Res..

[9]  G. Meijer,et al.  MACROD2 expression predicts response to 5-FU-based chemotherapy in stage III colon cancer , 2018, Oncotarget.

[10]  George-Lucian Moldovan,et al.  PARP10 promotes cellular proliferation and tumorigenesis by alleviating replication stress , 2018, bioRxiv.

[11]  A. von Kriegsheim,et al.  Nucleolar-nucleoplasmic shuttling of TARG1 and its control by DNA damage-induced poly-ADP-ribosylation and by nucleolar transcription , 2018, Scientific Reports.

[12]  Wenbo Yu,et al.  PARP10 suppresses tumor metastasis through regulation of Aurora A activity , 2018, Oncogene.

[13]  Anne-Claude Gingras,et al.  High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies. , 2018, Molecular cell.

[14]  I. Ahel,et al.  MacroD1 Is a Promiscuous ADP-Ribosyl Hydrolase Localized to Mitochondria , 2018, Front. Microbiol..

[15]  M. Antal,et al.  PARP10 (ARTD10) modulates mitochondrial function , 2018, PloS one.

[16]  B. Lüscher,et al.  ADP-Ribosylation, a Multifaceted Posttranslational Modification Involved in the Control of Cell Physiology in Health and Disease. , 2017, Chemical reviews.

[17]  W. Kraus,et al.  Generation and Characterization of Recombinant Antibody-like ADP-Ribose Binding Proteins. , 2017, Biochemistry.

[18]  I. Ahel,et al.  Reversible mono‐ADP‐ribosylation of DNA breaks , 2017, The FEBS journal.

[19]  T. Ahola,et al.  Blockade of the LRP16-PKR-NF-κB signaling axis sensitizes colorectal carcinoma cells to DNA-damaging cytotoxic therapy , 2017, eLife.

[20]  Devin P. Sullivan,et al.  A subcellular map of the human proteome , 2017, Science.

[21]  Andrew J. F. Valente,et al.  A simple ImageJ macro tool for analyzing mitochondrial network morphology in mammalian cell culture. , 2017, Acta histochemica.

[22]  G. Rossetti,et al.  The conserved macrodomains of the non-structural proteins of Chikungunya virus and other pathogenic positive strand RNA viruses function as mono-ADP-ribosylhydrolases , 2017, Scientific Reports.

[23]  D. Filippov,et al.  ADP-ribosylhydrolase activity of Chikungunya virus macrodomain is critical for virus replication and virulence , 2017, Proceedings of the National Academy of Sciences.

[24]  A. Imhof,et al.  ATM induces MacroD2 nuclear export upon DNA damage , 2016, Nucleic acids research.

[25]  B. Coutard,et al.  Viral Macro Domains Reverse Protein ADP-Ribosylation , 2016, Journal of Virology.

[26]  Anne E Carpenter,et al.  CellProfiler Analyst: interactive data exploration, analysis and classification of large biological image sets , 2016, bioRxiv.

[27]  J. Matthews,et al.  TCDD-inducible poly-ADP-ribose polymerase (TIPARP/PARP7) mono-ADP-ribosylates and co-activates liver X receptors. , 2016, The Biochemical journal.

[28]  Ellen T. Gelfand,et al.  A Novel Approach to High-Quality Postmortem Tissue Procurement: The GTEx Project , 2015, Biopreservation and biobanking.

[29]  Maurits J. J. Dijkstra,et al.  High Prevalence and Clinical Relevance of Genes Affected by Chromosomal Breaks in Colorectal Cancer , 2015, PloS one.

[30]  I. Matic,et al.  Processing of protein ADP-ribosylation by Nudix hydrolases. , 2015, The Biochemical journal.

[31]  D. Grant,et al.  Loss of the Mono-ADP-ribosyltransferase, Tiparp, Increases Sensitivity to Dioxin-induced Steatohepatitis and Lethality* , 2015, The Journal of Biological Chemistry.

[32]  Xiaobing Fu,et al.  An LRP16-containing preassembly complex contributes to NF-κB activation induced by DNA double-strand breaks , 2015, Nucleic acids research.

[33]  R. Scharpf,et al.  MACROD2 overexpression mediates estrogen independent growth and tamoxifen resistance in breast cancers , 2014, Proceedings of the National Academy of Sciences.

[34]  I. Matic,et al.  Family-wide analysis of poly(ADP-ribose) polymerase activity , 2014, Nature Communications.

[35]  N. Pfanner,et al.  The protein import machinery of mitochondria-a regulatory hub in metabolism, stress, and disease. , 2014, Cell metabolism.

[36]  E. Frolova,et al.  Interferon-Stimulated Poly(ADP-Ribose) Polymerases Are Potent Inhibitors of Cellular Translation and Virus Replication , 2013, Journal of Virology.

[37]  Bernhard Lüscher,et al.  Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation , 2013, Nature Reviews Molecular Cell Biology.

[38]  I. Matic,et al.  Deficiency of terminal ADP‐ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease , 2013, The EMBO journal.

[39]  E. Kremmer,et al.  Regulation of NF-κB signalling by the mono-ADP-ribosyltransferase ARTD10 , 2013, Nature Communications.

[40]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[41]  Martin Zacharias,et al.  A family of macrodomain proteins reverses cellular mono-ADP-ribosylation , 2013, Nature Structural &Molecular Biology.

[42]  A. Caflisch,et al.  Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases , 2013, Nature Structural &Molecular Biology.

[43]  Bianca Nijmeijer,et al.  Recognition of mono-ADP-ribosylated ARTD10 substrates by ARTD8 macrodomains. , 2013, Structure.

[44]  E. Kremmer,et al.  Caspase‐dependent cleavage of the mono‐ADP‐ribosyltransferase ARTD10 interferes with its pro‐apoptotic function , 2013, The FEBS journal.

[45]  Emma Lundberg,et al.  Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells , 2013, Nature Methods.

[46]  Anne K. Braczynski,et al.  ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation , 2013, Cell Communication and Signaling.

[47]  Anne K. Braczynski,et al.  ARTD10 substrate identification on protein microarrays: regulation of GSK3β by mono-ADP-ribosylation , 2013, Cell Communication and Signaling.

[48]  E. Kremmer,et al.  Dynamic subcellular localization of the mono-ADP-ribosyltransferase ARTD10 and interaction with the ubiquitin receptor p62 , 2012, Cell Communication and Signaling.

[49]  E. Frolova,et al.  New PARP Gene with an Anti-Alphavirus Function , 2012, Journal of Virology.

[50]  Brian Burke,et al.  A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells , 2012, The Journal of cell biology.

[51]  Joachim Goedhart,et al.  Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93% , 2012, Nature Communications.

[52]  Matko Bosnjak,et al.  REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms , 2011, PloS one.

[53]  Benjamin Thomas,et al.  Comparative evaluation of label‐free SINQ normalized spectral index quantitation in the central proteomics facilities pipeline , 2011, Proteomics.

[54]  Arjun Bhutkar,et al.  Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. , 2011, Molecular cell.

[55]  Xiaobing Fu,et al.  The macro domain protein family: Structure, functions, and their potential therapeutic implications , 2011, Mutation Research/Reviews in Mutation Research.

[56]  John M Denu,et al.  Identification of Macrodomain Proteins as Novel O-Acetyl-ADP-ribose Deacetylases* , 2011, The Journal of Biological Chemistry.

[57]  Bernhard Lüscher,et al.  Toward a unified nomenclature for mammalian ADP-ribosyltransferases. , 2010, Trends in biochemical sciences.

[58]  Xiaobing Fu,et al.  Keratin 18 attenuates estrogen receptor α-mediated signaling by sequestering LRP16 in cytoplasm , 2009, BMC Cell Biology.

[59]  Matthias Mann,et al.  Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. , 2009, Journal of proteome research.

[60]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[61]  E. Stelzer,et al.  A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation , 2009, Nature Structural &Molecular Biology.

[62]  Xiaobing Fu,et al.  The single-macro domain protein LRP16 is an essential cofactor of androgen receptor. , 2008, Endocrine-Related Cancer.

[63]  T. Ahola,et al.  Differential Activities of Cellular and Viral Macro Domain Proteins in Binding of ADP-Ribose Metabolites , 2008, Journal of Molecular Biology.

[64]  D. Litchfield,et al.  Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. , 2008, Molecular cell.

[65]  M. Nomura,et al.  Estrogenically regulated LRP16 interacts with estrogen receptor alpha and enhances the receptor's transcriptional activity. , 2007, Endocrine-related cancer.

[66]  T. Naoe,et al.  LRP16 is fused to RUNX1 in monocytic leukemia cell line with t(11;21)(q13;q22) , 2007, European journal of haematology.

[67]  M. Bycroft,et al.  The macro domain is an ADP‐ribose binding module , 2004, The EMBO journal.

[68]  M. Campbell,et al.  PANTHER: a library of protein families and subfamilies indexed by function. , 2003, Genome research.

[69]  P. Chambon,et al.  Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme. , 1963, Biochemical and biophysical research communications.

[70]  G. Rossetti,et al.  Assessment of Intracellular Auto-Modification Levels of ARTD10 Using Mono-ADP-Ribose-Specific Macrodomains 2 and 3 of Murine Artd8. , 2018, Methods in molecular biology.