Fast Ray Traversal of Tetrahedral and Hexahedral Meshes for Direct Volume Rendering

The importance of high-performance rendering of unstructured or curvilinear data sets has increased significantly, mainly due to its use in scientific simulations such as computational fluid dynamics and finite element computations. However, the unstructured nature of these data sets lead to rather slow implementations for ray tracing. The approaches discussed in this paper are fast and scalable towards realtime ray tracing applications. We evaluate new algorithms for rendering tetrahedral and hexahedral meshes. In each algorithm, the first cell along a ray is found using common realtime ray tracing techniques. For traversing subsequent cells within the volume, Plucker coordinates as well as ray-bilinear patch intersection tests are used. Since the volume is rendered directly, all algorithms are applicable for isosurface rendering, maximum-intensity projection, and emissionabsorption models.

[1]  Peter-Pike J. Sloan,et al.  Interactive ray tracing for volume visualization , 1999, IEEE Trans. Vis. Comput. Graph..

[2]  Jane Wilhelms,et al.  A coherent projection approach for direct volume rendering , 1991, SIGGRAPH.

[3]  Charles D. Hansen,et al.  Ray Bilinear Patch Intersections , 2004, J. Graphics, GPU, & Game Tools.

[4]  Thomas Ertl,et al.  Hardware-based view-independent cell projection , 2002, VVS '02.

[5]  Peter-Pike J. Sloan,et al.  Interactive Ray Tracing for Volume Visualization , 1999, IEEE Trans. Vis. Comput. Graph..

[6]  Nelson L. Max,et al.  A volume density optical model , 1992, VVS.

[7]  Hans-Peter Seidel,et al.  Faster isosurface ray tracing using implicit KD-trees , 2005, IEEE Transactions on Visualization and Computer Graphics.

[8]  Thomas Frühauf Raycasting of Nonregularly Structured Volume Data , 1994, Comput. Graph. Forum.

[9]  Gerd Marmitt,et al.  Recent Advancements in Ray tracing-based Volume Rendering Techniques , 2005 .

[10]  Cláudio T. Silva,et al.  Simple, Fast, and Robust Ray Casting of Irregular Grids , 1997, Scientific Visualization Conference (dagstuhl '97).

[11]  Arie E. Kaufman,et al.  Fast Projection-Based Ray-Casting Algorithm for Rendering Curvilinear Volumes , 1999, IEEE Trans. Vis. Comput. Graph..

[12]  Philipp Slusallek,et al.  Fast Ray Traversal of Unstructured Volume Data using Plucker Tests , 2005 .

[13]  Vlastimil Havran,et al.  Heuristic ray shooting algorithms , 2000 .

[14]  Marc Levoy,et al.  Efficient ray tracing of volume data , 1990, TOGS.

[15]  Bruce Lucas A scientific visualization renderer , 1992, Proceedings Visualization '92.

[16]  Simon Stegmaier,et al.  Hardware-accelerated reconstruction of polygonal isosurface representations on unstructured grids , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[17]  Michael P. Garrity Raytracing irregular volume data , 1990, SIGGRAPH 1990.

[18]  V. Pascucci,et al.  Isosurface computation made simple: hardware acceleration, adaptive refinement and tetrahedral stripping , 2004, VISSYM'04.

[19]  Theoharis Theoharis,et al.  Fast Ray-Tetrahedron Intersection Using Plucker Coordinates , 2003, J. Graphics, GPU, & Game Tools.

[20]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[21]  Michael P. Garrity Raytracing irregular volume data , 1990, VVS.

[22]  Akio Koide,et al.  An Efficient Method of Triangulating Equi-Valued Surfaces by Using Tetrahedral Cells , 1991 .

[23]  Peter Kipfer GPU Construction and Transparent Rendering of Iso-Surfaces , 2005 .

[24]  Wencheng Wang,et al.  Projective Volume Rendering By Excluding Occluded Voxels , 2005, Int. J. Image Graph..

[25]  Ingo Wald,et al.  Realtime ray tracing and interactive global illumination , 2004, Ausgezeichnete Informatikdissertationen.

[26]  Lisa K. Forssell Visualizing flow over curvilinear grid surfaces using line integral convolution , 1994, Proceedings Visualization '94.