Formulations, Relaxations, Approximations, and Gaps in the World of Scheduling

We discuss a number of polynomial time approximation results for scheduling problems. All presented results are based on the technique of rounding the optimal solution of an underlying linear programming relaxation. We analyse these relaxations, their integrality gaps, and the resulting approximation algorithms, and we derive matching worst-case instances.

[1]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[2]  Gerhard J. Woeginger A comment on scheduling on uniform machines under chain-type precedence constraints , 2000, Oper. Res. Lett..

[3]  David B. Shmoys,et al.  Scheduling to Minimize Average Completion Time: Off-Line and On-Line Approximation Algorithms , 1997, Math. Oper. Res..

[4]  Han Hoogeveen,et al.  Three, four, five, six, or the complexity of scheduling with communication delays , 1994, Oper. Res. Lett..

[5]  Jan Karel Lenstra,et al.  Approximation algorithms for scheduling unrelated parallel machines , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[6]  Martin E. Dyer,et al.  Formulating the single machine sequencing problem with release dates as a mixed integer program , 1990, Discret. Appl. Math..

[7]  Christophe Picouleau Etude de problemes d'optimisation dans les systemes distribues , 1992 .

[8]  Jean-Claude König,et al.  A Heuristic for a Scheduling Problem with Communication Delays , 1997, Oper. Res..

[9]  Rajeev Motwani,et al.  Precedence Constrained Scheduling to Minimize Sum of Weighted Completion Times on a Single Machine , 1999, Discret. Appl. Math..

[10]  Mihalis Yannakakis,et al.  Towards an Architecture-Independent Analysis of Parallel Algorithms , 1990, SIAM J. Comput..

[11]  Han Hoogeveen,et al.  Short Shop Schedules , 1997, Oper. Res..

[12]  Fabián A. Chudak,et al.  A half-integral linear programming relaxation for scheduling precedence-constrained jobs on a single machine , 1999, Oper. Res. Lett..

[13]  Graham K. Rand,et al.  Logistics of Production and Inventory , 1995 .

[14]  Han Hoogeveen,et al.  Preemptive scheduling with rejection , 2000, Math. Program..

[15]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[16]  B. J. Lageweg,et al.  Multiprocessor scheduling with communication delays , 1990, Parallel Comput..

[17]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[18]  Gerhard J. Woeginger,et al.  Approximability and Nonapproximability Results for Minimizing Total Flow Time on a Single Machine , 1999, SIAM J. Comput..

[19]  Eugene L. Lawler,et al.  Sequencing and scheduling: algorithms and complexity , 1989 .

[20]  Ronald L. Graham,et al.  Bounds on Multiprocessing Timing Anomalies , 1969, SIAM Journal of Applied Mathematics.

[21]  Eugene L. Lawler,et al.  Chapter 9 Sequencing and scheduling: Algorithms and complexity , 1993, Logistics of Production and Inventory.

[22]  Rajeev Motwani,et al.  Approximation techniques for average completion time scheduling , 1997, SODA '97.

[23]  C. N. Potts,et al.  An algorithm for the single machine sequencing problem with precedence constraints , 1980 .

[24]  Eric Torng,et al.  A Tight Lower Bound for the Best-alpha Algorithm , 1999, Inf. Process. Lett..

[25]  Teofilo F. Gonzalez,et al.  Open Shop Scheduling to Minimize Finish Time , 1976, JACM.

[26]  David B. Shmoys,et al.  Using dual approximation algorithms for scheduling problems: Theoretical and practical results , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).