The anatomical basis of functional localization in the cortex

The functions of a cortical area are determined by its extrinsic connections and intrinsic properties. Using the database CoCoMac, we show that each cortical area has a unique pattern of cortico-cortical connections — a 'connectional fingerprint'. We present examples of such fingerprints and use statistical analysis to show that no two areas share identical patterns. We suggest that the connectional fingerprint underlies the observed cell-firing differences between areas during different tasks. We refer to this pattern as a 'functional fingerprint' and present examples of such fingerprints. In addition to electrophysiological analysis, functional fingerprints can be determined by functional brain imaging. We argue that imaging provides a useful way to define such fingerprints because it is possible to compare activations across many cortical areas and across a wide range of tasks.

[1]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[2]  C. Colby,et al.  Heterogeneity of extrastriate visual areas and multiple parietal areas in the Macaque monkey , 1991, Neuropsychologia.

[3]  Peter A. Bandettini,et al.  From neuron to BOLD: new connections , 2001, Nature Neuroscience.

[4]  H. E. Rosvold,et al.  Localization of function within the dorsolateral prefrontal cortex of the rhesus monkey. , 1970, Experimental neurology.

[5]  S. Wise,et al.  Arbitrary associations between antecedents and actions , 2000, Trends in Neurosciences.

[6]  G. F. Tremblay,et al.  The Prefrontal Cortex , 1989, Neurology.

[7]  Nikos K. Logothetis,et al.  Three-Dimensional Shape Representation in Monkey Cortex , 2002, Neuron.

[8]  K Zilles,et al.  Coordinate-independent mapping of structural and functional data by objective relational transformation (ORT). , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[9]  M Dojat,et al.  Moving illusory contours activate primary visual cortex: an fMRI study. , 2000, Cerebral cortex.

[10]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[11]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[12]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[13]  G E Alexander,et al.  Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey. , 1990, Journal of neurophysiology.

[14]  P. Strick,et al.  Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized ‘premotor’ areas , 1979, Brain Research.

[15]  Richard S. J. Frackowiak,et al.  Retinotopic Maps in Human Prestriate Visual Cortex: The Demarcation of Areas V2 and V3 , 1995, NeuroImage.

[16]  D. G. Albrecht,et al.  Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? , 2000, Nature Neuroscience.

[17]  E. Murray,et al.  Functional double dissociation between two inferior temporal cortical areas: perirhinal cortex versus middle temporal gyrus. , 1997, Journal of neurophysiology.

[18]  R. Passingham,et al.  Initial Demonstration of in Vivo Tracing of Axonal Projections in the Macaque Brain and Comparison with the Human Brain Using Diffusion Tensor Imaging and Fast Marching Tractography , 2002, NeuroImage.

[19]  R. W. Guillery Thalamic networks for relay and modulation Edited by D. Minciacchi, M. Molinari, G. Macchi and E.G. Jones. Pergamon Press (1993). Price £85.00, $135.00 , 1994, Neuroscience.

[20]  A. Roberts,et al.  Induction of expression of the rat G5 nervous system antigen occurs postnatally. , 1983, Brain research.

[21]  Stephen A. Engel,et al.  Neural Response to Perception of Volume in the Lateral Occipital Complex , 2001, Neuron.

[22]  R. Passingham,et al.  The prefrontal cortex: response selection or maintenance within working memory? , 2000, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[23]  H. E. Rosvold,et al.  Analysis of the delayed-alternation deficit produced by dorsolateral prefrontal lesions in the rhesus monkey. , 1971, Journal of comparative and physiological psychology.

[24]  G. E. Alexander,et al.  Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex. , 1997, Journal of neurophysiology.

[25]  T. Paus,et al.  Functional connectivity of the anterior cingulate cortex within the human frontal lobe: a brain-mapping meta-analysis , 2000, Experimental Brain Research.

[26]  F. Crick,et al.  Backwardness of human neuroanatomy , 1993, Nature.

[27]  G. E. Alexander,et al.  Preparation for movement: neural representations of intended direction in three motor areas of the monkey. , 1990, Journal of neurophysiology.

[28]  Muge M. Bakircioglu,et al.  Mapping visual cortex in monkeys and humans using surface-based atlases , 2001, Vision Research.

[29]  M. Young The organization of neural systems in the primate cerebral cortex , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  G. Rizzolatti,et al.  Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey , 1985, Behavioural Brain Research.

[31]  T. Paus,et al.  Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies , 1998, Neuroreport.

[32]  R. Passingham,et al.  Premotor cortex and the conditions for movement in monkeys (Macaca fascicularis) , 1985, Behavioural Brain Research.

[33]  E. Halgren,et al.  Location of human face‐selective cortex with respect to retinotopic areas , 1999, Human brain mapping.

[34]  Guy Marchal,et al.  Human Cortical Regions Involved in Extracting Depth from Motion , 1999, Neuron.

[35]  H. Too,et al.  Cloning of a novel murine isoform of the glial cell line‐derived neurotrophic factor receptor , 1998, Neuroreport.

[36]  K. E. Stephan,et al.  Multimodal characterisation of cortical areas by multivariate analyses of receptor binding and connectivity data , 2001, Anatomy and Embryology.

[37]  K. S. Lashley,et al.  The retention of habits by the rat after destruction of the frontal portion of the cerebrum. , 1917 .

[38]  S P Wise,et al.  Conditional oculomotor learning: population vectors in the supplementary eye field. , 1997, Journal of neurophysiology.

[39]  A. J. Collins,et al.  Introduction To Multivariate Analysis , 1981 .

[40]  Karl J. Friston The labile brain. I. Neuronal transients and nonlinear coupling. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[41]  M. A. O'Neil,et al.  The connectional organization of the cortico-thalamic system of the cat. , 1999, Cerebral cortex.

[42]  D. Lindsley Physiological psychology. , 1956, Annual review of psychology.

[43]  M. Young,et al.  Computational analysis of functional connectivity between areas of primate cerebral cortex. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[44]  M P Young,et al.  Analysis of the connectional organization of neural systems associated with the hippocampus in rats. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[45]  H. Sakata,et al.  The TINS Lecture The parietal association cortex in depth perception and visual control of hand action , 1997, Trends in Neurosciences.

[46]  George Henry Dunteman,et al.  Introduction To Multivariate Analysis , 1984 .

[47]  Leslie G. Ungerleider,et al.  Object vision and spatial vision: two cortical pathways , 1983, Trends in Neurosciences.

[48]  P. Groenen,et al.  Modern multidimensional scaling , 1996 .

[49]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[50]  N Palomero-Gallagher,et al.  Receptor autoradiographic mapping of the mesial motor and premotor cortex of the macaque monkey , 1998, The Journal of comparative neurology.

[51]  G. Rizzolatti,et al.  Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey , 1991, The Journal of comparative neurology.

[52]  J F Stein,et al.  Neuronal activity in the primate motor thalamus during visually triggered and internally generated limb movements. , 1999, Journal of neurophysiology.

[53]  R. Tootell,et al.  Anatomical evidence for MT and additional cortical visual areas in humans. , 1995, Cerebral cortex.

[54]  P. T. Fox,et al.  Positron emission tomographic studies of the cortical anatomy of single-word processing , 1988, Nature.

[55]  K Zilles,et al.  Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. , 1996, Advances in neurology.

[56]  H. Barbas,et al.  Cortical structure predicts the pattern of corticocortical connections. , 1997, Cerebral cortex.

[57]  C Galletti,et al.  Superior area 6 afferents from the superior parietal lobule in the macaque monkey , 1998, The Journal of comparative neurology.

[58]  J Tanji,et al.  Changing directions of forthcoming arm movements: neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex. , 1996, Journal of neurophysiology.

[59]  A J Hudspeth,et al.  Cytoarchitectonic mapping by microdensitometry. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[60]  B. Gulyás,et al.  Functional Organization of the Human Visual Cortex , 1993 .

[61]  S Clarke,et al.  Direct interhemispheric visual input to human speech areas , 1997, Human brain mapping.

[62]  John R. Hodges,et al.  Localization and Neuroimaging in Neuropsychology , 1995 .

[63]  Klaas E. Stephan,et al.  Connectional characteristics of areas in Walker's map of primate prefrontal cortex , 2001, Neurocomputing.

[64]  J. Tanji,et al.  Neuronal activities in the primate motor fields of the agranular frontal cortex preceding visually triggered and self-paced movement , 2004, Experimental Brain Research.

[65]  M P Young,et al.  On imputing function to structure from the behavioural effects of brain lesions. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[66]  J. Mazziotta,et al.  Brain mapping : the systems , 2000 .

[67]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[68]  K. Zilles,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 2. Spatial Normalization to Standard Anatomical Space , 2000, NeuroImage.

[69]  Richard S. J. Frackowiak,et al.  Functional Separation of Colour and Motion Centres in Human Visual Cortex , 1993 .

[70]  D. Pandya,et al.  Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns , 1999, The European journal of neuroscience.

[71]  P. Goldman-Rakic,et al.  Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. , 1998, Journal of neurophysiology.

[72]  N. J. Herrod,et al.  Redefining the functional organization of working memory processes within human lateral prefrontal cortex , 1999, The European journal of neuroscience.

[73]  Karl J. Friston,et al.  Relating Macroscopic Measures of Brain Activity to Fast, Dynamic Neuronal Interactions , 2000, Neural Computation.

[74]  Diego Minciacchi,et al.  Thalamic Networks for Relay and Modulation , 1993 .

[75]  G. Orban,et al.  Attention to Speed of Motion, Speed Discrimination, and Task Difficulty: An fMRI Study , 2000, NeuroImage.

[76]  Malcolm P. Young,et al.  Objective analysis of the topological organization of the primate cortical visual system , 1992, Nature.

[77]  John F. Kalaska,et al.  Spatial coding of movement: A hypothesis concerning the coding of movement direction by motor cortical populations , 1983 .

[78]  W. Pohl,et al.  Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys. , 1973, Journal of comparative and physiological psychology.

[79]  D. Humphrey,et al.  Motor control : concepts and issues , 1991 .

[80]  G. Rizzolatti,et al.  Object representation in the ventral premotor cortex (area F5) of the monkey. , 1997, Journal of neurophysiology.

[81]  M MISHKIN,et al.  Effects of small frontal lesions on delayed alternation in monkeys. , 1957, Journal of neurophysiology.

[82]  D. Pandya,et al.  Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey , 1987, The Journal of comparative neurology.

[83]  N. Logothetis,et al.  Functional imaging of the monkey brain , 1999, Nature Neuroscience.

[84]  M. Young,et al.  Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[85]  C C Hilgetag,et al.  Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. , 2001, Cerebral cortex.

[86]  Karl J. Friston,et al.  A direct quantitative relationship between the functional properties of human and macaque V5 , 2000, Nature Neuroscience.

[87]  H. B. Morton,et al.  Tactile Discrimination Performance in the Monkey: The Effect of Ablation of Various Subdivisions of Posterior Parietal Cortex , 1967 .

[88]  K H Pribram,et al.  Effects of ablations of temporal cortex upon speech sound discrimination in the monkey. , 1969, Experimental neurology.

[89]  D. Pandya,et al.  Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey , 1989, The Journal of comparative neurology.

[90]  Paul B. Johnson,et al.  Cortical networks for visual reaching: physiological and anatomical organization of frontal and parietal lobe arm regions. , 1996, Cerebral cortex.

[91]  J Tanji,et al.  Role for cells in the presupplementary motor area in updating motor plans. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[92]  M. Inase,et al.  Neuronal activity in the primate premotor, supplementary, and precentral motor cortex during visually guided and internally determined sequential movements. , 1991, Journal of neurophysiology.

[93]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[94]  M MISHKIN,et al.  Simultaneous and successive visual discrimination by monkeys with inferotemporal lesions. , 1955, Journal of comparative and physiological psychology.

[95]  P. Goldman-Rakic,et al.  Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[96]  E. G. Walsh,et al.  THE NEUROPSYCHOLOGY OF LASHLEY , 1961 .

[97]  G E Alexander,et al.  Preferential representation of instructed target location versus limb trajectory in dorsal premotor area. , 1997, Journal of neurophysiology.

[98]  M. Arbib,et al.  Grasping objects: the cortical mechanisms of visuomotor transformation , 1995, Trends in Neurosciences.

[99]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[100]  J. Duncan,et al.  Common regions of the human frontal lobe recruited by diverse cognitive demands , 2000, Trends in Neurosciences.

[101]  E G Jones,et al.  Making brain connections: neuroanatomy and the work of TPS Powell, 1923-1996. , 1999, Annual review of neuroscience.

[102]  William S. Curran,et al.  A/I: a synthesis , 1982, ACM-SE 20.

[103]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[104]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[105]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[106]  Ellen Perecman,et al.  The frontal lobes revisited. , 1987 .

[107]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[108]  Mortimer Mishkin,et al.  Cortical Visual Areas and Their Interactions , 1972 .

[109]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[110]  Karl Zilles,et al.  The Developing European Computerized Human Brain Database for All Imaging Modalities , 1996, NeuroImage.

[111]  J. Tanji,et al.  Neuronal activity in the primate supplementary, pre-supplementary and premotor cortex during externally and internally instructed sequential movements , 1994, Neuroscience Research.

[112]  T. Powell,et al.  The basic uniformity in structure of the neocortex. , 1980, Brain : a journal of neurology.

[113]  Hans-Lukas Teuberi THE BRAIN AND HUMAN BEHAVIOUR , 1958, Ulster medical journal.

[114]  R Weinberg,et al.  New Concepts... , 1995 .

[115]  D. Heeger,et al.  Motion Opponency in Visual Cortex , 1999, The Journal of Neuroscience.

[116]  A R Luria [On the brain and human behavior]. , 1969, L'Hygiene mentale.

[117]  D. Neary Lesion Analysis in Neuropsychology , 1990 .

[118]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[119]  J B Woodward,et al.  The Functional Magnetic Resonance Imaging Data Center (fMRIDC): the challenges and rewards of large-scale databasing of neuroimaging studies. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[120]  Karl J. Friston,et al.  The Relationship Between Synchronization Among Neuronal Populations and Their Mean Activity Levels , 1999, Neural Computation.

[121]  K H PRIBRAM,et al.  A further experimental analysis of the behavioral deficit that follows injury to the primate frontal cortex. , 1961, Experimental neurology.

[122]  M P Young,et al.  Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[123]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[124]  Jun Tanji,et al.  Role for supplementary motor area cells in planning several movements ahead , 1994, Nature.

[125]  A. Dale,et al.  Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging , 1995, Nature.

[126]  P. Strick,et al.  The origin of thalamic inputs to the arcuate premotor and supplementary motor areas , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[127]  C. Blakemore,et al.  Visual motion processing in the anterior ectosylvian sulcus of the cat. , 1996, Journal of neurophysiology.

[128]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[129]  C. Blakemore,et al.  Analysis of connectivity in the cat cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[130]  J. Fuster Prefrontal Cortex , 2018 .

[131]  P. Goldman-Rakic,et al.  Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[132]  E. Marg A VISION OF THE BRAIN , 1994 .

[133]  M P Young,et al.  Non-metric multidimensional scaling in the analysis of neuroanatomical connection data and the organization of the primate cortical visual system. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[134]  C. Poupon,et al.  Regularization of Diffusion-Based Direction Maps for the Tracking of Brain White Matter Fascicles , 2000, NeuroImage.

[135]  G. Rizzolatti,et al.  The organization of the cortical motor system: new concepts. , 1998, Electroencephalography and clinical neurophysiology.