Mechanical, corrosion and wear characteristics of powder metallurgy processed Ti-6Al-4V/B4C metal matrix composites

[1]  F. Toptan,et al.  Corrosion and tribocorrosion behaviour of Ti − B 4 C composite intended for orthopaedic implants , 2016 .

[2]  N. Selvakumar,et al.  Optimization and Effect of Weight Fraction of MoS2 on the Tribological Behavior of Mg-TiC-MoS2 Hybrid Composites , 2016 .

[3]  Hamid Khayyam,et al.  Effect of B4C, TiB2 and ZrSiO4 ceramic particles on mechanical properties of aluminium matrix composites: Experimental investigation and predictive modelling , 2016 .

[4]  K. Prakash,et al.  Effect of reinforcement, compact pressure and hard ceramic coating on aluminium rock dust composite performance , 2016 .

[5]  K. Prakash,et al.  Dry sliding wear characterization of Al 6061/rock dust composite , 2015 .

[6]  V. Balaji,et al.  Dry Sliding Wear Behavior of Titanium–(TiB+TiC) in situ Composite Developed by Spark Plasma Sintering , 2015 .

[7]  C. Wen,et al.  Carbon Nanotube Reinforced Titanium Metal Matrix Composites Prepared by Powder Metallurgy—A Review , 2015 .

[8]  M. D. Goel,et al.  Characteristics and wear behavior of cenosphere dispersed titanium matrix composite developed by powder metallurgy route , 2014 .

[9]  M. Gupta,et al.  Hybridizing micro-Ti with nano-B4C particulates to improve the microstructural and mechanical characteristics of Mg–Ti composite , 2014 .

[10]  S. Aravindan,et al.  Wear performance of Al–SiC–B4C hybrid composites under dry sliding conditions , 2013 .

[11]  H. Imai,et al.  Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite , 2013 .

[12]  L. Geng,et al.  Dry sliding wear behavior of titanium matrix composites hybrid-reinforced by in situ TiBw and TiCp , 2012 .

[13]  Mohsen Ostad Shabani,et al.  Influence of the hard coated B4C particulates on wear resistance of Al–Cu alloys , 2012 .

[14]  Zhigang Zak Fang,et al.  A critical review of mechanical properties of powder metallurgy titanium , 2010 .

[15]  Ė. Martin,et al.  Influence of microstructure and texture on the corrosion and tribocorrosion behavior of Ti–6Al–4V , 2010 .

[16]  J. Lim,et al.  Hardness and wear resistance improvement of surface composite layer on Ti–6Al–4V substrate fabricated by powder sintering , 2010 .

[17]  S. Fouvry,et al.  Impact of contact size and complex gross–partial slip conditions on Ti–6Al–4V/Ti–6Al–4V fretting wear , 2009 .

[18]  G. Tang,et al.  Structure and tribological performance of modified layer on Ti6Al4V alloy by plasma-based ion implantation with oxygen , 2006 .

[19]  Y. Tian,et al.  Wear properties of alloyed layers produced by laser surface alloying of pure titanium with B4C and T{i} mixed powders , 2005 .

[20]  Y. Hibi,et al.  Tribological Behavior of Titanium Nitride–Titanium Composites in Short-Chain Alcohols , 2005 .

[21]  G. Song,et al.  A study on transition of iron from active into passive state , 2005 .

[22]  Q. Jiang,et al.  Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy , 2005 .

[23]  Jorge F. Santos,et al.  Mechanical and metallurgical properties of friction-welded TiC particulate reinforced Ti–6Al–4V , 2004 .

[24]  D. Dunand,et al.  Microstructure and mechanical properties of Ti/W and Ti–6Al–4V/W composites fabricated by powder-metallurgy , 2003 .

[25]  M. Gu,et al.  Microstructure and mechanical properties of boron carbide thin films , 2002 .

[26]  C. M. Ward-Close,et al.  Titanium Particulate Metal Matrix Composites – Reinforcement, Production Methods, and Mechanical Properties , 2000 .

[27]  D. E. Alman,et al.  The abrasive wear of sintered titanium matrix-ceramic particle reinforced composites , 1999 .