Two Implicit Meshless Finite Point Schemes for the Two-Dimensional Distributed-Order Fractional Equation

Abstract In this paper, the distributed-order time fractional sub-diffusion equation on the bounded domains is studied by using the finite-point-type meshless method. The finite point method is a point collocation based method which is truly meshless and computationally efficient. To construct the shape functions of the finite point method, the moving least square reproducing kernel approximation is employed. Two implicit discretisation of order O ⁢ ( τ ) {O(\tau)} and O ⁢ ( τ 1 + 1 2 ⁢ σ ) {O(\tau^{1+\frac{1}{2}\sigma})} are derived, respectively. Stability and L 2 {L^{2}} norm convergence of the obtained difference schemes are proved. Numerical examples are provided to confirm the theoretical results.

[1]  Mark M. Meerschaert,et al.  Distributed-order fractional diffusions on bounded domains , 2009, 0912.2521.

[2]  Xiaoxian Zhang,et al.  Persistence of anomalous dispersion in uniform porous media demonstrated by pore‐scale simulations , 2007 .

[3]  M. Caputo Linear models of dissipation whose Q is almost frequency independent , 1966 .

[4]  A. Hanyga,et al.  Anomalous diffusion without scale invariance , 2007 .

[5]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[6]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[7]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[8]  Anatoly N. Kochubei,et al.  Distributed order calculus and equations of ultraslow diffusion , 2008 .

[9]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[10]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[11]  L. Gelhar,et al.  Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis , 1992 .

[12]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[13]  Zhi‐zhong Sun,et al.  A fully discrete difference scheme for a diffusion-wave system , 2006 .

[14]  Zhi-zhong Sun,et al.  Two unconditionally stable and convergent difference schemes with the extrapolation method for the one‐dimensional distributed‐order differential equations , 2016 .

[15]  Wing Kam Liu,et al.  Moving least-square reproducing kernel method Part II: Fourier analysis , 1996 .

[16]  Wei Zeng,et al.  Finite Difference/Finite Element Methods for Distributed-Order Time Fractional Diffusion Equations , 2017, J. Sci. Comput..

[17]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[18]  Yury Luchko,et al.  BOUNDARY VALUE PROBLEMS FOR THE GENERALIZED TIME-FRACTIONAL DIFFUSION EQUATION OF DISTRIBUTED ORDER , 2009 .

[19]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[20]  Francesco Mainardi,et al.  Some aspects of fractional diffusion equations of single and distributed order , 2007, Appl. Math. Comput..

[21]  Somayeh Mashayekhi,et al.  Numerical solution of distributed order fractional differential equations by hybrid functions , 2016, J. Comput. Phys..

[22]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[23]  Carl F. Lorenzo,et al.  Variable Order and Distributed Order Fractional Operators , 2002 .

[24]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[25]  F. Perazzo,et al.  A posteriori error estimator and an adaptive technique in meshless finite points method , 2009 .

[26]  Ted Belytschko,et al.  Overview and applications of the reproducing Kernel Particle methods , 1996 .

[27]  I M Sokolov,et al.  Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  E. Oñate,et al.  A stabilized finite point method for analysis of fluid mechanics problems , 1996 .

[29]  R. Gorenflo,et al.  Time-fractional Diffusion of Distributed Order , 2007, cond-mat/0701132.

[30]  Bangti Jin,et al.  Error estimates for approximations of distributed order time fractional diffusion with nonsmooth data , 2015, 1504.01529.

[31]  Yumin Cheng,et al.  Error estimates for the finite point method , 2008 .

[32]  Guirong Liu,et al.  A point interpolation method for two-dimensional solids , 2001 .

[33]  Stevan Pilipović,et al.  Existence and calculation of the solution to the time distributed order diffusion equation , 2009 .

[34]  Diana Baader,et al.  Theoretical Numerical Analysis A Functional Analysis Framework , 2016 .

[35]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[36]  John T. Katsikadelis,et al.  Numerical solution of distributed order fractional differential equations , 2014, J. Comput. Phys..

[37]  Blas M Vinagre Jara,et al.  Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[38]  Kai Diethelm,et al.  Numerical analysis for distributed-order differential equations , 2009 .

[39]  Rudolf Gorenflo,et al.  Cauchy and Nonlocal Multi-Point Problems for Distributed Order Pseudo-Differential Equations, Part One , 2005 .

[40]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[41]  Zhi-Zhong Sun,et al.  Some high-order difference schemes for the distributed-order differential equations , 2015, J. Comput. Phys..

[42]  Neville J. Ford,et al.  Distributed order equations as boundary value problems , 2012, Comput. Math. Appl..

[43]  Zhi-Zhong Sun,et al.  Two Alternating Direction Implicit Difference Schemes for Two-Dimensional Distributed-Order Fractional Diffusion Equations , 2016, J. Sci. Comput..