Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices

[1]  Nicola B Mercuri,et al.  Temperature sensitivity of dopaminergic neurons of the substantia nigra pars compacta: involvement of transient receptor potential channels. , 2005, Journal of neurophysiology.

[2]  B. Nilius,et al.  TRP channels: an overview. , 2005, Cell calcium.

[3]  M. Tymianski,et al.  TRPMs and neuronal cell death , 2005, Pflügers Archiv.

[4]  S. McNulty,et al.  The role of TRPM channels in cell death , 2005, Pflügers Archiv.

[5]  Christine E. Molnar,et al.  Blocking the anoxic depolarization protects without functional compromise following simulated stroke in cortical brain slices. , 2005, Journal of neurophysiology.

[6]  K. Reymann,et al.  Na+ and Ca2+ homeostasis pathways, cell death and protection after oxygen–glucose-deprivation in organotypic hippocampal slice cultures , 2004, Neuroscience.

[7]  H. Kimelberg Water homeostasis in the brain: Basic concepts , 2004, Neuroscience.

[8]  G. Fiskum,et al.  Inhibition of glutamate‐induced delayed calcium deregulation by 2‐APB and La3+ in cultured cortical neurones , 2004, Journal of neurochemistry.

[9]  S. Skaper,et al.  TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP‐ribose) polymerase , 2004, British journal of pharmacology.

[10]  A. Pringle In, out, shake it all about: elevation of [Ca2+]i during acute cerebral ischaemia. , 2004, Cell calcium.

[11]  C. D. Benham,et al.  Flufenamic acid is a pH-dependent antagonist of TRPM2 channels , 2004, Neuropharmacology.

[12]  Michael J Caterina,et al.  2-Aminoethoxydiphenyl Borate Activates and Sensitizes the Heat-Gated Ion Channel TRPV3 , 2004, The Journal of Neuroscience.

[13]  J. Westwick,et al.  TRP channels as drug targets. , 2004, Novartis Foundation symposium.

[14]  J. Macdonald,et al.  A Key Role for TRPM7 Channels in Anoxic Neuronal Death , 2003, Cell.

[15]  H. Watanabe,et al.  Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  A. Patapoutian,et al.  ThermoTRP channels and beyond: mechanisms of temperature sensation , 2003, Nature Reviews Neuroscience.

[17]  M. Rice,et al.  Brain edema induced by in vitro ischemia: causal factors and neuroprotection , 2003, Journal of neurochemistry.

[18]  B. Minke,et al.  TRP gating is linked to the metabolic state and maintenance of the Drosophila photoreceptor cells. , 2003, Cell calcium.

[19]  A. Perraud,et al.  Critical Intracellular Ca2+ Dependence of Transient Receptor Potential Melastatin 2 (TRPM2) Cation Channel Activation* , 2003, The Journal of Biological Chemistry.

[20]  P. Herson,et al.  Hydrogen‐Peroxide‐Induced Toxicity of Rat Striatal Neurones Involves Activation of a Non‐Selective Cation Channel , 2003, The Journal of physiology.

[21]  G. Czirják,et al.  Ruthenium red inhibits TASK-3 potassium channel by interconnecting glutamate 70 of the two subunits. , 2003, Molecular pharmacology.

[22]  U. Gerber,et al.  Group I metabotropic glutamate receptors activate a calcium‐sensitive transient receptor potential‐like conductance in rat hippocampus , 2003, The Journal of physiology.

[23]  B. Nilius,et al.  Heat-evoked Activation of TRPV4 Channels in a HEK293 Cell Expression System and in Native Mouse Aorta Endothelial Cells* , 2002, The Journal of Biological Chemistry.

[24]  A. Laptook,et al.  The effects of temperature on hypoxic-ischemic brain injury. , 2002, Clinics in perinatology.

[25]  M. Hasselmo,et al.  Graded persistent activity in entorhinal cortex neurons , 2002, Nature.

[26]  Makoto Tominaga,et al.  Heat-Evoked Activation of the Ion Channel, TRPV4 , 2002, The Journal of Neuroscience.

[27]  David E. Clapham,et al.  TRPV3 is a calcium-permeable temperature-sensitive cation channel , 2002, Nature.

[28]  J. Eisfeld,et al.  Activation of the Cation Channel Long Transient Receptor Potential Channel 2 (LTRPC2) by Hydrogen Peroxide , 2002, The Journal of Biological Chemistry.

[29]  John B. Hogenesch,et al.  A Heat-Sensitive TRP Channel Expressed in Keratinocytes , 2002, Science.

[30]  R. Orlando,et al.  Chloride transport in rabbit esophageal epithelial cells , 2002 .

[31]  B. Minke,et al.  TRP channel proteins and signal transduction. , 2002, Physiological reviews.

[32]  C. Naus,et al.  Intercellular Calcium Signaling in Astrocytes via ATP Release through Connexin Hemichannels* , 2002, The Journal of Biological Chemistry.

[33]  P. Koulen,et al.  Pharmacological modulation of intracellular Ca2+ channels at the single-channel level , 2001, Molecular Neurobiology.

[34]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[35]  G. Somjen Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. , 2001, Physiological reviews.

[36]  D. Clapham,et al.  The trp ion channel family , 2001, Nature Reviews Neuroscience.

[37]  G. Somjen,et al.  Na(+) dependence and the role of glutamate receptors and Na(+) channels in ion fluxes during hypoxia of rat hippocampal slices. , 2000, Journal of neurophysiology.

[38]  R. Neumar,et al.  Brain ischemia and reperfusion: molecular mechanisms of neuronal injury , 2000, Journal of the Neurological Sciences.

[39]  G. Somjen,et al.  Na(+) and K(+) concentrations, extra- and intracellular voltages, and the effect of TTX in hypoxic rat hippocampal slices. , 2000, Journal of neurophysiology.

[40]  D. Attwell,et al.  Glutamate release in severe brain ischaemia is mainly by reversed uptake , 2000, Nature.

[41]  I. Kass,et al.  Effect of small changes in temperature on CA1 pyramidal cells from rat hippocampal slices during hypoxia: implications about the mechanism of hypothermic protection against neuronal damage , 1999, Brain Research.

[42]  R. Andrew,et al.  Potential sources of intrinsic optical signals imaged in live brain slices. , 1999, Methods.

[43]  K. Morita,et al.  Molecular cloning and characterization of rat trp homologues from brain. , 1999, Brain research. Molecular brain research.

[44]  E. Lehning,et al.  Oxygen/Glucose Deprivation in Hippocampal Slices: Altered Intraneuronal Elemental Composition Predicts Structural and Functional Damage , 1999, The Journal of Neuroscience.

[45]  P. Lipton,et al.  Ischemic cell death in brain neurons. , 1999, Physiological reviews.

[46]  M. Charlton,et al.  Distinct Influx Pathways, Not Calcium Load, Determine Neuronal Vulnerability to Calcium Neurotoxicity , 1998, Journal of neurochemistry.

[47]  G. Somjen,et al.  Inhibition of major cationic inward currents prevents spreading depression-like hypoxic depolarization in rat hippocampal tissue slices , 1998, Brain Research.

[48]  C. Baumgarten,et al.  Using gadolinium to identify stretch-activated channels: technical considerations. , 1998, American journal of physiology. Cell physiology.

[49]  T. Iwamoto,et al.  Differential inhibition of Na+/Ca2+exchanger isoforms by divalent cations and isothiourea derivative. , 1998, American journal of physiology. Cell physiology.

[50]  J. Lipski,et al.  DETECTION OF WEAKLY EXPRESSED GENES IN THE ROSTRAL VENTROLATERAL MEDULLA OF THE RAT USING MICROPUNCH AND REVERSE TRANSCRIPTION‐POLYMERASE CHAIN REACTION TECHNIQUES , 1997, Clinical and experimental pharmacology & physiology.

[51]  H. Higashi,et al.  Mechanisms underlying the rapid depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro. , 1997, Journal of neurophysiology.

[52]  H. Higashi,et al.  Factors that reverse the persistent depolarization produced by deprivation of oxygen and glucose in rat hippocampal CA1 neurons in vitro. , 1997, Journal of neurophysiology.

[53]  H. Bönisch,et al.  Lanthanides inhibit the human noradrenaline, 5-hydroxytryptamine and dopamine transporters , 1997, Naunyn-Schmiedeberg's Archives of Pharmacology.

[54]  F. Barone,et al.  Brain Cooling During Transient Focal Ischemia Provides Complete Neuroprotection , 1997, Neuroscience & Biobehavioral Reviews.

[55]  F. Schottler,et al.  Hypoxic neuronal damage in the absence of hypoxic depolarization in rat hippocampal slices: the role of glutamate receptors , 1996, Brain Research.

[56]  M. Hamilton,et al.  Effect of ruthenium red on voltage-sensitive Ca++ channels. , 1995, The Journal of pharmacology and experimental therapeutics.

[57]  Peter G. Aitken,et al.  Membrane currents in CA1 pyramidal cells during spreading depression (SD) and SD-like hypoxic depolarization , 1993, Brain Research.

[58]  P. Lipton,et al.  Intracellular calcium levels and calcium fluxes in the CA1 region of the rat hippocampal slice during in vitro ischemia: relationship to electrophysiological cell damage , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  A. Mitani,et al.  Temperature dependence of hypoxia-induced calcium accumulation in gerbil hippocampal slices , 1991, Brain Research.

[60]  G. Somjen,et al.  Ion channel involvement in hypoxia-induced spreading depression in hippocampal slices , 1991, Brain Research.

[61]  Arnold R. Kriegstein,et al.  Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex , 1989, Journal of Neuroscience Methods.

[62]  K. Krnjević,et al.  Changes in membrane currents of hippocampal neurons evoked by brief anoxia. , 1989, Journal of neurophysiology.

[63]  R. Dingledine,et al.  Role of extracellular space in hyperosmotic suppression of potassium-induced electrographic seizures. , 1989, Journal of neurophysiology.

[64]  B. Siesjö,et al.  Calcium Fluxes, Calcium Antagonists, and Calcium-Related Pathology in Brain Ischemia, Hypoglycemia, and Spreading Depression: A Unifying Hypothesis , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[65]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[66]  M. Lukas,et al.  Role of TRP channels in oxidative stress. , 2004, Novartis Foundation symposium.

[67]  J. Holsheimer Electrical conductivity of the hippocampal CA1 layers and application to current-source-density analysis , 2004, Experimental Brain Research.

[68]  N. Shimizu,et al.  LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. , 2002, Molecular cell.