Texture, anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM)

[1]  H. Maier,et al.  Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading , 2013 .

[2]  K. Wegener,et al.  High temperature material properties of IN738LC processed by selective laser melting (SLM) technology , 2013 .

[3]  J. Kruth,et al.  Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder , 2013 .

[4]  Enrico Bruder,et al.  Quantification of local and global elastic anisotropy in ultrafine grained gradient microstructures, produced by linear flow splitting , 2013 .

[5]  Ming Gao,et al.  The microstructure and mechanical properties of deposited-IN718 by selective laser melting , 2012 .

[6]  Weidong Huang,et al.  Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy , 2011 .

[7]  H. Schaeben,et al.  Texture Analysis with MTEX – Free and Open Source Software Toolbox , 2010 .

[8]  R. J. Mitchell,et al.  Morphological changes of γ′ precipitates in superalloy IN738LC at various cooling rates , 2008 .

[9]  Helmut Schaeben,et al.  A novel pole figure inversion method: specification of the MTEX algorithm , 2008 .

[10]  Charles Hays,et al.  Size and Shape Effects for Gamma Prime in Alloy 738 , 2008 .

[11]  O. Ojo,et al.  Liquation Microfissuring in the Weld Heat-Affected Zone of an Overaged Precipitation-Hardened Nickel-Base Superalloy , 2007 .

[12]  O. Ojo,et al.  Study of the fusion zone and heat-affected zone microstructures in tungsten inert gas-welded INCONEL 738LC superalloy , 2006 .

[13]  O. Ojo,et al.  On the role of liquated γ′ precipitates in weld heat affected zone microfissuring of a nickel-based superalloy , 2005 .

[14]  O. Ojo,et al.  On incipient melting during high temperature heat treatment of cast Inconel 738 superalloy , 2004 .

[15]  O. Ojo,et al.  Liquid film migration of constitutionally liquated γ′ in weld heat affected zone (HAZ) of Inconel 738LC superalloy , 2004 .

[16]  R. Mirshams,et al.  Tensile strengthening in the nickel-base superalloy IN738LC , 2000 .

[17]  David L. Bourell,et al.  Direct laser fabrication of superalloy cermet abrasive turbine blade tips , 2000 .

[18]  U. F. Kocks,et al.  Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties , 1998 .

[19]  E. Jordan,et al.  Elastic Constants of Single Crystal Hastelloy X at Elevated Temperatures , 1998 .

[20]  R. Mirshams,et al.  Influence of various heat treatments on the microstructure of polycrystalline IN738LC , 1997 .

[21]  Jian-Gang Han,et al.  Identification of elastic constants of alloys with sheet and fibre textures based on resonance measurements and finite element analysis , 1995 .

[22]  M. Chaturvedi,et al.  The role of alloying elements in the design of nickel-base superalloys , 1984 .

[23]  T. Abbas,et al.  Local atomic ordering in nickel based Ir and Rh alloys , 1984 .

[24]  G. Meyrick,et al.  Phase Transformations in Metals and Alloys , 1973 .

[25]  A. Götte,et al.  Metall , 1897 .

[26]  Petra Himmel,et al.  Microstructure Of Superalloys , 2016 .

[27]  Fude Wang Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting technology , 2012 .

[28]  Ernest H. Rutter,et al.  Deformation mechanisms, rheology and tectonics , 2011 .

[29]  Kamran Mumtaz,et al.  High density selective laser melting of Waspaloy , 2008 .

[30]  L. Froyen,et al.  Fundamentals of Selective Laser Melting of alloyed steel powders , 2006 .