Dithienopyrrole–quinoxaline/pyridopyrazine donor–acceptor polymers: synthesis and electrochemical, optical, charge-transport, and photovoltaic properties

Soluble alternating copolymers of N-(3,4,5-tri-n-dodecyloxyphenyl)dithieno[3,2-b:2′,3′-d]pyrrole donor groups and 2,3-di-n-decylquinoxaline, 2,3-di-n-decylpyrido[3,4-b]pyrazine, 2,3,6,7-tetrakis(n-decyloxy)benzo[a,c]phenazine, or 2,3,6,7-tetrakis(n-decyloxy)dibenzo[f,h]pyrido[4,3-b]quinoxaline acceptors were synthesised using Stille coupling reactions. Experimental absorption maxima in THF range from 645 to 770 nm. These optical data, along with the results of quantum-chemical calculations and electrochemical measurements, show that, as expected, the pyridopyrazine moiety acts as a stronger acceptor than quinoxaline and that the extended species benzophenazine and dibenzopyridoquinoxaline are stronger acceptors than quinoxaline and pyridopyrazine, respectively. Modest average hole mobilities of up to ca. 3.0 × 10−4 cm2 V−1s−1 were obtained in field-effect transistors. Bulk heterojunction photovoltaic devices made from blends of the benzo[a,c]phenazine-based polymer with 3′-phenyl-3′H-cyclopropa[1,9](C60-Ih)[5,6]fullerene-3′-butanoic acid methyl ester (1 : 3 weight ratio) exhibited average power conversion efficiencies up to 1.4%.

[1]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[2]  Takakazu Yamamoto,et al.  Syntheses of New Alternating CT-Type Copolymers of Thiophene and Pyrido[3,4-b]pyrazine Units: Their Optical and Electrochemical Properties in Comparison with Similar CT Copolymers of Thiophene with Pyridine and Quinoxaline , 1999 .

[3]  Ye Tao,et al.  Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. , 2008, Journal of the American Chemical Society.

[4]  C. Winder,et al.  Low bandgap polymers for photon harvesting in bulk heterojunction solar cells , 2004 .

[5]  T. Verbiest,et al.  Influence of the Substituent and Polymerization Methodology on the Properties of Chiral Poly(dithieno[3,2-b:2‘,3‘-d]pyrrole)s , 2007 .

[6]  Y. Udum,et al.  Tuning of the neutral state color of the π-conjugated donor–acceptor–donor type polymer from blue to green via changing the donor strength on the polymer , 2009 .

[7]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[8]  Xiaoniu Yang,et al.  Relating the Morphology of Poly(p‐phenylene vinylene)/Methanofullerene Blends to Solar‐Cell Performance , 2004 .

[9]  H. Sirringhaus,et al.  Efficient Top‐Gate, Ambipolar, Light‐Emitting Field‐Effect Transistors Based on a Green‐Light‐Emitting Polyfluorene , 2006 .

[10]  Jan C Hummelen,et al.  Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor. , 2007, Organic letters.

[11]  Yunlong Guo,et al.  Low bandgap π‐conjugated copolymers based on fused thiophenes and benzothiadiazole: Synthesis and structure‐property relationship study , 2009 .

[12]  Kelly Lancaster,et al.  Electronic and optical properties of 4H-cyclopenta[2,1-b:3,4-b']bithiophene derivatives and their 4-heteroatom-substituted analogues: a joint theoretical and experimental comparison. , 2010, The journal of physical chemistry. B.

[13]  Wen‐Chang Chen,et al.  Synthesis of New Indolocarbazole-Acceptor Alternating Conjugated Copolymers and Their Applications to Thin Film Transistors and Photovoltaic Cells , 2009 .

[14]  T. Kowalewski,et al.  Highly disordered polymer field effect transistors: N-alkyl dithieno[3,2-b:2',3'-d]pyrrole-based copolymers with surprisingly high charge carrier mobilities. , 2008, Journal of the American Chemical Society.

[15]  Christoph J. Brabec,et al.  Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells , 2009 .

[16]  A. Berlin,et al.  Electrochemical polymerization of 1H,7H‐pyrrolo[2′,3′:4,5]‐thieno[3,2‐b]pyrrole and 4H‐dithieno[3,2‐b;2′,3′‐d]pyrrole , 1992 .

[17]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[18]  Zhiyuan Xie,et al.  Novel NIR-absorbing conjugated polymers for efficient polymer solar cells: effect of alkyl chain length on device performance , 2009 .

[19]  K. Hashimoto,et al.  Band gap and molecular energy level control of perylene diimide-based donor-acceptor copolymers for all-polymer solar cells , 2010 .

[20]  Weimin Zhang,et al.  Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. , 2008, Journal of the American Chemical Society.

[21]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[22]  David L. Carroll,et al.  High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends , 2005 .

[23]  Wen‐Chang Chen,et al.  Synthesis and Properties of New Dialkoxyphenylene Quinoxaline-Based Donor-Acceptor Conjugated Polymers and Their Applications on Thin Film Transistors and Solar Cells , 2009 .

[24]  O. Inganäs,et al.  Photodiodes made from poly(pyridopyrazine vinylene) : polythiophene blends , 2001 .

[25]  A. Watanabe,et al.  Laser flash photolysis study on the photoinduced reactions of 3,3′-bridged bithiophenes , 1998 .

[26]  T. Kowalewski,et al.  Transistor Paint: High Mobilities in Small Bandgap Polymer Semiconductor Based on the Strong Acceptor, Diketopyrrolopyrrole and Strong Donor, Dithienopyrrole , 2010, Advanced materials.

[27]  John R. Reynolds,et al.  A spray-processable, low bandgap, and ambipolar donor-acceptor conjugated polymer. , 2009, Journal of the American Chemical Society.

[28]  I. A. Hümmelgen,et al.  Considerations about the electrochemical estimation of the ionization potential of conducting polymers , 2002 .

[29]  Donal D. C. Bradley,et al.  A photophysical study of PCBM thin films , 2007 .

[30]  Junbiao Peng,et al.  High-performance polymer heterojunction solar cells of a polysilafluorene derivative , 2008 .

[31]  C. M. Li,et al.  Semiconductive Polymers Containing Dithieno[3,2-b:2',3'-d]pyrrole for Organic Thin-Film Transistors , 2008 .

[32]  S. Jenekhe,et al.  High‐mobility Ambipolar Transistors and High‐gain Inverters from a Donor–Acceptor Copolymer Semiconductor , 2010, Advanced materials.

[33]  T. Verbiest,et al.  Steering the Conformation and Chiroptical Properties of Poly(dithienopyrrole)s Substituted with Chiral OPV Side Chains. , 2010 .

[34]  E. J. Foster,et al.  Self-assembly of discotic mesogens in solution and in liquid crystalline phases: effects of substituent position and hydrogen bonding. , 2008, Journal of the American Chemical Society.

[35]  A. Jen,et al.  Benzobis(silolothiophene)-Based Low Bandgap Polymers for Efficient Polymer Solar Cells† , 2011 .

[36]  O. Inganäs,et al.  A New Donor–Acceptor–Donor Polyfluorene Copolymer with Balanced Electron and Hole Mobility† , 2007 .

[37]  Yongfang Li,et al.  Synthesis and Photovoltaic Properties of Bithiazole-Based Donor−Acceptor Copolymers , 2010 .

[38]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[39]  S. Jenekhe,et al.  Electronic properties and field-effect transistors of thiophene-based donor-acceptor conjugated copolymers , 2005 .

[40]  S. Rasmussen,et al.  A simple and efficient route to N-functionalized dithieno[3,2-b:2',3'-d]pyrroles: fused-ring building blocks for new conjugated polymeric systems. , 2003, The Journal of organic chemistry.

[41]  A. Facchetti,et al.  Semiconducting Polymeric Materials , 2008 .

[42]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[43]  H. Hoppe,et al.  Synthesis and properties of fluorene‐based polyheteroarylenes for photovoltaic devices , 2006 .

[44]  John R. Reynolds,et al.  Dithienopyrrole-based donor–acceptor copolymers: low band-gap materials for charge transport, photovoltaics and electrochromism , 2010 .

[45]  Yingying Fu,et al.  Low bandgap EDOT-quinoxaline and EDOT-thiadiazol-quinoxaline conjugated polymers: Synthesis, redox, and photovoltaic device , 2010 .

[46]  Chain‐Shu Hsu,et al.  Synthesis of conjugated polymers for organic solar cell applications. , 2009, Chemical reviews.

[47]  K. Hashimoto,et al.  Synthesis and Photovoltaic Properties of a Novel Low Band Gap Polymer Based on N-Substituted Dithieno[3,2-b:2',3'-d]pyrrole , 2008 .

[48]  G. Casalbore-Miceli,et al.  Electrochemical preparation of conducting polymer composites: Poly(vinylchloride)/poly(dithienopyrrole) and poly(vinylchloride)/ poly(dithienothiophene) , 1993 .

[49]  Mario Leclerc,et al.  A Low‐Bandgap Poly(2,7‐Carbazole) Derivative for Use in High‐Performance Solar Cells , 2007 .

[50]  S. Jenekhe,et al.  Conjugated Donor-Acceptor Copolymer Semiconductors. Synthesis, Optical Properties, Electrochemistry, and Field-Effect Carrier Mobility of Pyridopyrazine-Based Copolymers , 2008 .

[51]  F. Diederich,et al.  Dramatically Enhanced Fluorescence of Heteroaromatic Chromophores upon Insertion as Spacers into Oligo(triacetylene)s , 2002 .

[52]  T. Nishi,et al.  Ultraviolet photoelectron spectroscopy and inverse photoemission spectroscopy of [6,6]-phenyl-C61-butyric acid methyl ester in gas and solid phases , 2008 .

[53]  Yang Yang,et al.  Light-emitting electrochemical cells from a blend of p- and n-type luminescent conjugated polymers , 1997 .

[54]  M. Turbiez,et al.  High‐Mobility Ambipolar Near‐Infrared Light‐Emitting Polymer Field‐Effect Transistors , 2008 .

[55]  Wen‐Chang Chen,et al.  New Thiophene-Phenylene-Thiophene Acceptor Random Conjugated Copolymers for Optoelectronic Applications , 2010 .

[56]  Wei Zhang,et al.  Highly Fluorescent Conjugated Copolymers Containing Dithieno[3,2-b:2′,3′-d]pyrrole , 2008 .

[57]  Yongfang Li,et al.  Poly(quinoxaline vinylene) With Conjugated Phenylenevinylene Side Chain: A Potential Polymer Acceptor With Broad Absorption Band , 2007 .

[58]  K. Kubota,et al.  Chemical and Electrochemical Preparation of Poly(quinoline-2,6-diyl), Poly(quinoxaline-2,6-diyl), and Poly(1,5-naphthyridine-2,6-diyl) by Using Nickel Complexes. Importance of the 2,6-Bonding for Linear Structure, Highly Extended π-Conjugation, and Strong Electron-accepting Properties , 1993 .

[59]  Daisuke Kitazawa,et al.  Quinoxaline-based π-conjugated donor polymer for highly efficient organic thin-film solar cells , 2009 .

[60]  S. Jenekhe,et al.  New Didecyloxyphenylene−Acceptor Alternating Conjugated Copolymers: Synthesis, Properties, and Optoelectronic Device Applications , 2008 .

[61]  Samson A Jenekhe,et al.  Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solution-processed quantum dots. , 2010, Nano letters.

[62]  Neil G. Connelly,et al.  Chemical Redox Agents for Organometallic Chemistry. , 1996, Chemical reviews.

[63]  Alex K.-Y. Jen,et al.  Efficient Polymer Solar Cells Based on the Copolymers of Benzodithiophene and Thienopyrroledione , 2010 .

[64]  Christoph J. Brabec,et al.  Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency , 2006 .

[65]  T. Kurihara,et al.  π-Conjugated Donor−Acceptor Copolymers Constituted of π-Excessive and π-Deficient Arylene Units. Optical and Electrochemical Properties in Relation to CT Structure of the Polymer , 1996 .

[66]  J. Haw,et al.  Low band-gap polymers based on quinoxaline derivatives and fused thiophene as donor materials for high efficiency bulk-heterojunction photovoltaic cells , 2009 .

[67]  Cherno Jaye,et al.  Direct determination of the electronic structure of the poly(3-hexylthiophene):phenyl-[6,6]-C61 butyric acid methyl ester blend , 2010 .

[68]  Natalie J. Thompson,et al.  Bis[bis-(4-alkoxyphenyl)amino] derivatives of dithienylethene, bithiophene, dithienothiophene and dithienopyrrole: palladium-catalysed synthesis and highly delocalised radical cations. , 2007, Chemistry.

[69]  K. Hashimoto,et al.  Synthesis and Photovoltaic Properties of Donor−Acceptor Copolymers Based on 5,8-Dithien-2-yl-2,3-diphenylquinoxaline , 2010 .

[70]  J. Mikroyannidis,et al.  Bipolar poly(p-phenylene vinylene)s bearing electron-donating triphenylamine or carbazole and electron-accepting quinoxaline moieties , 2008 .

[71]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[72]  S. Jenekhe,et al.  Organometallic Donor−Acceptor Conjugated Polymer Semiconductors: Tunable Optical, Electrochemical, Charge Transport, and Photovoltaic Properties , 2009 .

[73]  Xiaoniu Yang,et al.  Morphology and Thermal Stability of the Active Layer in Poly(p-phenylenevinylene)/Methanofullerene Plastic Photovoltaic Devices , 2004 .

[74]  Ye Tao,et al.  A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. , 2010, Journal of the American Chemical Society.

[75]  Samson A Jenekhe,et al.  The role of mesoscopic PCBM crystallites in solvent vapor annealed copolymer solar cells. , 2009, ACS nano.

[76]  T. Swager,et al.  Highly Emissive Iptycene-Fluorene Conjugated Copolymers: Synthesis and Photophysical Properties , 2008 .

[77]  Yongfang Li,et al.  Copolymers of perylene diimide with dithienothiophene and dithienopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors , 2009 .

[78]  O. Inganäs,et al.  Synthesis and Characterization of Soluble and n-Dopable Poly(quinoxaline vinylene)s and Poly(pyridopyrazine vinylene)s with Relatively Small Band Gap , 2002 .

[79]  Yong Cao,et al.  Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. , 2009, Accounts of chemical research.

[80]  G. Wegner,et al.  SYNTHESIS OF ALKYL-SUBSTITUTED AND ALKOXY-SUBSTITUTED BENZILS AND OXIDATIVE COUPLING TO TETRAALKOXYPHENANTHRENE-9,10-DIONES , 1994 .

[81]  D. E. Motaung,et al.  Correlation between the morphology and photo-physical properties of P3HT:fullerene blends , 2010 .

[82]  Yongfang Li,et al.  Novel two‐dimensional donor–acceptor conjugated polymers containing quinoxaline units: Synthesis, characterization, and photovoltaic properties , 2008 .

[83]  R. Janssen,et al.  Fused ring thiophene-based poly(heteroarylene ethynylene)s for organic solar cells , 2010 .

[84]  X. Jing,et al.  Pyrazine-containing acene-type molecular ribbons with up to 16 rectilinearly arranged fused aromatic rings. , 2008, Journal of the American Chemical Society.

[85]  A. Facchetti,et al.  Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors based on the indenofluorenebis(dicyanovinylene) core. , 2008, Journal of the American Chemical Society.

[86]  Mm Martijn Wienk,et al.  Small band gap polymers based on diketopyrrolopyrrole , 2010 .

[87]  Christoph Brabec,et al.  Transient absorption spectroscopy of charge photogeneration yields and lifetimes in a low bandgap polymer/fullerene film. , 2009, Chemical communications.

[88]  Dieter Meissner,et al.  Nanoscale Morphology of Conjugated Polymer/Fullerene‐Based Bulk‐ Heterojunction Solar Cells , 2004 .

[89]  S. Rasmussen,et al.  N-functionalized poly(dithieno[3,2-b:2',3'-d]pyrrole)s : Highly fluorescent materials with reduced band gaps , 2006 .

[90]  H. Sirringhaus,et al.  Simultaneous Optimization of Light Gain and Charge Transport in Ambipolar Light-Emitting Polymer Field-Effect Transistors , 2009 .

[91]  Wen‐Chang Chen,et al.  Photophysical and electroluminescent properties of fluorene‐based binary and ternary donor–acceptor polymer blends , 2007 .

[92]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.