The Geometry of Synchronization Problems and Learning Group Actions

We develop a geometric framework, based on the classical theory of fibre bundles, to characterize the cohomological nature of a large class of synchronization-type problems in the context of graph inference and combinatorial optimization. We identify each synchronization problem in topological group G on connected graph $$\Gamma $$ Γ with a flat principal G -bundle over $$\Gamma $$ Γ , thus establishing a classification result for synchronization problems using the representation variety of the fundamental group of $$\Gamma $$ Γ into G . We then develop a twisted Hodge theory on flat vector bundles associated with these flat principal G -bundles, and provide a geometric realization of the graph connection Laplacian as the lowest-degree Hodge Laplacian in the twisted de Rham–Hodge cochain complex. Motivated by these geometric intuitions, we propose to study the problem of learning group actions —partitioning a collection of objects based on the local synchronizability of pairwise correspondence relations—and provide a heuristic synchronization-based algorithm for solving this type of problems. We demonstrate the efficacy of this algorithm on simulated and real datasets.

[1]  N. Hitchin THE SELF-DUALITY EQUATIONS ON A RIEMANN SURFACE , 1987 .

[2]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[3]  Keenan Crane,et al.  Digital geometry processing with discrete exterior calculus , 2013, SIGGRAPH '13.

[4]  Noureddine El Karoui,et al.  Graph connection Laplacian methods can be made robust to noise , 2016 .

[5]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[6]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[7]  Amit Singer,et al.  Spectral Convergence of the connection Laplacian from random samples , 2013, 1306.1587.

[8]  Characteristic classes for the deformation of flat connections , 1976 .

[9]  Asuman E. Ozdaglar,et al.  Flows and Decompositions of Games: Harmonic and Potential Games , 2010, Math. Oper. Res..

[10]  P. Michor Topics in Differential Geometry , 2008 .

[11]  Masaki Kashiwara Construction du noyau de Bergman local , 1980 .

[12]  D. Donoho,et al.  Hessian Eigenmaps : new locally linear embedding techniques for high-dimensional data , 2003 .

[13]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[14]  A. Singer Angular Synchronization by Eigenvectors and Semidefinite Programming. , 2009, Applied and computational harmonic analysis.

[15]  M. Kashiwara The Riemann-Hilbert Problem for Holonomic Systems , 1984 .

[16]  Abelian and non-abelian cohomology , 2014, 1404.5025.

[17]  Yuan Yao,et al.  Statistical ranking and combinatorial Hodge theory , 2008, Math. Program..

[18]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[19]  Amit Singer,et al.  A Cheeger Inequality for the Graph Connection Laplacian , 2012, SIAM J. Matrix Anal. Appl..

[20]  Carlos Simpson,et al.  Moduli of representations of the fundamental group of a smooth projective variety I , 1994 .

[21]  Ori Parzanchevski,et al.  Simplicial complexes: Spectrum, homology and random walks , 2012, Random Struct. Algorithms.

[22]  Ron Kikinis,et al.  On the Laplace-Beltrami operator and brain surface flattening , 1999, IEEE Transactions on Medical Imaging.

[23]  Roi Poranne,et al.  Lifted bijections for low distortion surface mappings , 2014, ACM Trans. Graph..

[24]  A. Kock Differential forms with values in groups , 1982, Bulletin of the Australian Mathematical Society.

[25]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[26]  A. Weinstein The symplectic structure on moduli space , 1995 .

[27]  P. J. Higgins,et al.  Nonabelian Algebraic Topology: Filtered Spaces, Crossed Complexes, Cubical Homotopy Groupoids , 2011 .

[28]  Alain Connes,et al.  Non-commutative differential geometry , 1985 .

[29]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  J. Dupont SIMPLICIAL DE RHAM COHOMOLOGY AND CHARACTERISTIC CLASSES OF FLAT BUNDLES , 1976 .

[31]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[32]  Lek-Heng Lim,et al.  Cohomology of Cryo-Electron Microscopy , 2016, SIAM J. Appl. Algebra Geom..

[33]  Amit Singer,et al.  Exact and Stable Recovery of Rotations for Robust Synchronization , 2012, ArXiv.

[34]  Raoul Bott,et al.  The Yang-Mills equations over Riemann surfaces , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[35]  Tingran Gao,et al.  The diffusion geometry of fibre bundles: Horizontal diffusion maps , 2016, Applied and Computational Harmonic Analysis.

[36]  N. Chentsov A Systematic Theory of Exponential Families of Probability Distributions , 1966 .

[37]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[38]  Jean-Luc Brylinski,et al.  Loop Spaces, Characteristic Classes and Geometric Quantization , 1994 .

[39]  A. Kock Synthetic Differential Geometry , 1981 .

[40]  Kevin Corlette,et al.  Flat $G$-bundles with canonical metrics , 1988 .

[41]  J. Gower Generalized procrustes analysis , 1975 .

[42]  Z. Mebkhout Une autre équivalence de catégories , 1984 .

[43]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[44]  Amit Singer,et al.  Global Registration of Multiple Point Clouds Using Semidefinite Programming , 2013, SIAM J. Optim..

[45]  Tingran Gao,et al.  Development and Assessment of Fully Automated and Globally Transitive Geometric Morphometric Methods, With Application to a Biological Comparative Dataset With High Interspecific Variation , 2018, Anatomical record.

[46]  F. Labourie Lectures on Representations of Surface Groups , 2013 .

[47]  Doug M. Boyer,et al.  Introducing molaR: a New R Package for Quantitative Topographic Analysis of Teeth (and Other Topographic Surfaces) , 2016, Journal of Mammalian Evolution.

[48]  A. Sergeev,et al.  The Riemann-Hilbert problem : a publication from the Steklov Institute of Mathematics , 1994 .

[49]  Doug M. Boyer,et al.  Gaussian Process Landmarking for Three-Dimensional Geometric Morphometrics , 2018, SIAM J. Math. Data Sci..

[50]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[51]  H. Esnault Characteristic classes of flat bundles , 1988 .

[52]  Vincent D. Blondel,et al.  Cramér-Rao bounds for synchronization of rotations , 2012, ArXiv.

[53]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[54]  C. Simpson Moduli of representations of the fundamental group of a smooth projective variety. II , 1994 .

[55]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: multiscale methods. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Leonidas J. Guibas,et al.  Soft Maps Between Surfaces , 2012, Comput. Graph. Forum.

[57]  F. Chung Four proofs for the Cheeger inequality and graph partition algorithms , 2007 .

[58]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[59]  Ronen Basri,et al.  Tight relaxation of quadratic matching , 2015, SGP '15.

[60]  Leonidas J. Guibas,et al.  Image Co-segmentation via Consistent Functional Maps , 2013, 2013 IEEE International Conference on Computer Vision.

[61]  Matthew Kahle,et al.  Spectral Gaps of Random Graphs and Applications , 2012, International Mathematics Research Notices.

[62]  Tomás Pajdla,et al.  Robust Rotation and Translation Estimation in Multiview Reconstruction , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[63]  Ronen Basri,et al.  Controlling singular values with semidefinite programming , 2014, ACM Trans. Graph..

[64]  Doug M. Boyer,et al.  Gaussian Process Landmarking on Manifolds , 2018, SIAM J. Math. Data Sci..

[65]  John Milnor,et al.  On the existence of a connection with curvature zero , 1958 .

[66]  Iasonas Kokkinos,et al.  Intrinsic shape context descriptors for deformable shapes , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[67]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.

[68]  Z. Mebkhout Sur le problème de Hilbert-Riemann , 1980 .

[69]  I. Daubechies,et al.  Conformal Wasserstein distances: Comparing surfaces in polynomial time , 2011, 1103.4408.

[70]  Raymond O. Wells,et al.  Differential analysis on complex manifolds , 1980 .

[71]  Amit Singer,et al.  Multireference alignment using semidefinite programming , 2013, ITCS.

[72]  H. Bandelt,et al.  Metric graph theory and geometry: a survey , 2006 .

[73]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[74]  Mikhail Belkin,et al.  Semi-Supervised Learning on Riemannian Manifolds , 2004, Machine Learning.

[75]  Leonidas J. Guibas,et al.  Functional map networks for analyzing and exploring large shape collections , 2014, ACM Trans. Graph..

[76]  Flat bundles and holonomy homomorphisms , 1983 .

[77]  A. Singer,et al.  Orientability and Diffusion Maps. , 2011, Applied and computational harmonic analysis.

[78]  N. Steenrod Topology of Fibre Bundles , 1951 .

[79]  Yoel Shkolnisky,et al.  Viewing Direction Estimation in Cryo-EM Using Synchronization , 2012, SIAM J. Imaging Sci..

[80]  J. Madore An Introduction to Noncommutative Differential Geometry and Its Physical Applications , 1995 .

[81]  F. Kamber,et al.  FLAT BUNDLES AND CHARACTERISTIC CLASSES OF GROUP-REPRESENTATIONS. , 1967 .

[82]  Johan A. K. Suykens,et al.  Magnetic eigenmaps for community detection in directed networks , 2016, Physical review. E.

[83]  Noga Alon,et al.  A Graph-Theoretic Game and Its Application to the k-Server Problem , 1995, SIAM J. Comput..

[84]  Iasonas Kokkinos,et al.  Scale-invariant heat kernel signatures for non-rigid shape recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[85]  Leonidas J. Guibas,et al.  Consistent Shape Maps via Semidefinite Programming , 2013, SGP '13.

[86]  Persi Diaconis,et al.  A Sequential Importance Sampling Algorithm for Generating Random Graphs with Prescribed Degrees , 2011, Internet Math..

[87]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[88]  J. PUENTE,et al.  CONFORMAL WASSERSTEIN DISTANCE : II , 2011 .

[89]  Ori Parzanchevski,et al.  Isoperimetric inequalities in simplicial complexes , 2012, Comb..

[90]  Tingran Gao,et al.  Hypoelliptic Diffusion Maps and Their Applications in Automated Geometric Morphometrics , 2015 .

[91]  Roi Poranne,et al.  Seamless surface mappings , 2015, ACM Trans. Graph..

[92]  Tingran Gao The Diffusion Geometry of Fibre Bundles , 2016 .

[93]  Lek-Heng Lim,et al.  Hodge Laplacians on graphs , 2015, SIAM Rev..

[94]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[95]  N. Steenrod The Topology of Fibre Bundles. (PMS-14) , 1951 .

[96]  Yaron Lipman,et al.  Point registration via efficient convex relaxation , 2016, ACM Trans. Graph..

[97]  Tingran Gao,et al.  Semi‐supervised determination of pseudocryptic morphotypes using observer‐free characterizations of anatomical alignment and shape , 2017, Ecology and evolution.

[98]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[99]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[100]  Anand Rangarajan,et al.  The Softassign Procrustes Matching Algorithm , 1997, IPMI.

[101]  Amin Coja-Oghlan,et al.  The Spectral Gap of Random Graphs with Given Expected Degrees , 2006, Electron. J. Comb..

[102]  Qi-Xing Huang,et al.  SMAC: Simultaneous Mapping and Clustering Using Spectral Decompositions , 2018, ICML.

[103]  C. Simpson Higgs bundles and local systems , 1992 .

[104]  Lei Zhu,et al.  Area-Preserving Mappings for the Visualization of Medical Structures , 2003, MICCAI.

[105]  S. Majid Noncommutative Riemannian geometry on graphs , 2010, 1011.5898.

[106]  Yutong Chen,et al.  NON-UNIQUE GAMES OVER COMPACT GROUPS AND ORIENTATION ESTIMATION IN CRYO-EM , 2015, Inverse problems.

[107]  W. Goldman Characteristic classes and representations of discrete subgroups of Lie groups , 1982 .

[108]  P. Koehl,et al.  Landmark-free geometric methods in biological shape analysis , 2015, Journal of The Royal Society Interface.

[109]  Amit Singer,et al.  Approximating the little Grothendieck problem over the orthogonal and unitary groups , 2013, Mathematical Programming.

[110]  Mikael Fortelius,et al.  High-level similarity of dentitions in carnivorans and rodents , 2007, Nature.

[111]  Valeria Bernal,et al.  Technical note: Performance of semi and fully automated approaches for registration of 3D surface coordinates in geometric morphometric studies. , 2016, American journal of physical anthropology.

[112]  Caroline J. Klivans,et al.  A Cheeger-Type Inequality on Simplicial Complexes , 2012, Adv. Appl. Math..

[113]  R. Kenyon Spanning forests and the vector bundle Laplacian , 2010, 1001.4028.

[114]  J. Madore An Introduction to Noncommutative Differential Geometry and its Physical Applications: Introduction , 1999 .

[115]  S. Morita Geometry Of Characteristic Classes , 2001 .

[116]  James L. Johnson,et al.  Discrete Hodge Theory on Graphs: A Tutorial , 2013, Computing in Science & Engineering.

[117]  J. Pandey The Riemann‐Hilbert Problem , 2011 .

[118]  Noncommutative Geometry Year 2000 , 2000, math/0011193.

[119]  I. Daubechies,et al.  Continuous Procrustes Distance Between Two Surfaces , 2011, 1106.4588.

[120]  Wei Zeng,et al.  Area Preserving Brain Mapping , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[121]  A. García-Raboso,et al.  Introduction to Nonabelian Hodge Theory: flat connections, Higgs bundles and complex variations of Hodge structure , 2014, 1406.1693.

[122]  Yaron Lipman,et al.  Sensor network localization by eigenvector synchronization over the euclidean group , 2012, TOSN.

[123]  Leonidas J. Guibas,et al.  Persistence Barcodes for Shapes , 2005, Int. J. Shape Model..

[124]  Hongdong Li,et al.  Rotation Averaging , 2013, International Journal of Computer Vision.

[125]  Thomas A. Funkhouser,et al.  Algorithms to automatically quantify the geometric similarity of anatomical surfaces , 2011, Proceedings of the National Academy of Sciences.

[126]  Snigdhansu Chatterjee,et al.  Procrustes Problems , 2005, Technometrics.

[127]  Ingrid Daubechies,et al.  A New Fully Automated Approach for Aligning and Comparing Shapes , 2015, Anatomical record.

[128]  Clifford Henry Taubes Differential Geometry: Bundles, Connections, Metrics and Curvature , 2011 .

[129]  Mihai Cucuringu,et al.  Sync-Rank: Robust Ranking, Constrained Ranking and Rank Aggregation via Eigenvector and SDP Synchronization , 2015, IEEE Transactions on Network Science and Engineering.

[130]  Doug M. Boyer,et al.  Relief index of second mandibular molars is a correlate of diet among prosimian primates and other euarchontan mammals. , 2008, Journal of human evolution.

[131]  Yaron Lipman,et al.  Conformal Wasserstein distance: II. computational aspects and extensions , 2013, Math. Comput..

[132]  Ang Yan Sheng,et al.  Discrete Differential Geometry , 2017 .

[133]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[134]  Sayan Mukherjee,et al.  Random walks on simplicial complexes and harmonics† , 2013, Random Struct. Algorithms.

[135]  André Haefliger Extension of complexes of groups , 1992 .

[136]  Leonidas J. Guibas,et al.  An Optimization Approach to Improving Collections of Shape Maps , 2011, Comput. Graph. Forum.

[137]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[138]  Zhizhen Zhao,et al.  Viewing Angle Classification of Cryo-Electron Microscopy Images Using Eigenvectors , 2011, SIAM J. Imaging Sci..

[139]  Assaf Naor,et al.  Efficient rounding for the noncommutative grothendieck inequality , 2012, STOC '13.

[140]  Leonidas J. Guibas,et al.  Near-Optimal Joint Object Matching via Convex Relaxation , 2014, ICML.

[141]  A. Singer,et al.  Vector diffusion maps and the connection Laplacian , 2011, Communications on pure and applied mathematics.

[142]  Johan A.K. Suykens,et al.  Deformed Laplacians and spectral ranking in directed networks , 2015, Applied and Computational Harmonic Analysis.

[143]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[144]  Yaron Lipman,et al.  Comparing Dirichlet normal surface energy of tooth crowns, a new technique of molar shape quantification for dietary inference, with previous methods in isolation and in combination. , 2011, American Journal of Physical Anthropology.

[145]  Alexander M. Bronstein,et al.  Volumetric heat kernel signatures , 2010, 3DOR '10.

[146]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[147]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[148]  Ronald Brown Groupoids and Van Kampen's Theorem , 1967 .

[149]  F. Chung,et al.  Spectra of random graphs with given expected degrees , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[150]  Richard Peng,et al.  Sparsified Cholesky and multigrid solvers for connection laplacians , 2015, STOC.

[151]  Leonidas J. Guibas,et al.  An optimization approach for extracting and encoding consistent maps in a shape collection , 2012, ACM Trans. Graph..

[152]  The Riemann-Hilbert problem , 1994 .

[153]  N. Hitchin Flat connections and geometric quantization , 1990 .

[154]  C. Villani Optimal Transport: Old and New , 2008 .

[155]  MAPPING CLASS GROUP DYNAMICS ON SURFACE GROUP REPRESENTATIONS , 2005, math/0509114.

[156]  C. Villani Topics in Optimal Transportation , 2003 .

[157]  Hongkai Zhao,et al.  Multi-scale Non-Rigid Point Cloud Registration Using Robust Sliced-Wasserstein Distance via Laplace-Beltrami Eigenmap , 2014, 1406.3758.

[158]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[159]  P. Deligne,et al.  Equations differentielles à points singuliers reguliers , 1970 .

[160]  Jesus Puente,et al.  Distances and algorithms to compare sets of shapes for automated biological morphometrics , 2013 .

[161]  Xin Zhao,et al.  Area-Preservation Mapping using Optimal Mass Transport , 2013, IEEE Transactions on Visualization and Computer Graphics.

[162]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .