Group theoretic, lie algebraic and Jordan algebraic formulations of the sic existence problem

Although symmetric informationally complete positive operator valued measures (SIC POVMs, or SICs for short) have been constructed in every dimension up to 67, a general existence proof remains elusive. The purpose of this paper is to show that the SIC existence problem is equivalent to three other, on the face of it quite different problems. Although it is still not clear whether these reformulations of the problem will make it more tractable, we believe that the fact that SICs have these connections to other areas of mathematics is of some intrinsic interest. Specifically, we reformulate the SIC problem in terms of (1) Lie groups, (2) Lie algebras and (3) Jordan algebras (the second result being a greatly strengthened version of one previously obtained by Appleby, Flammia and Fuchs). The connection between these three reformulations is non-trivial: It is not easy to demonstrate their equivalence directly, without appealing to their common equivalence to SIC existence. In the course of our analysis we obtain a number of other results which may be of some independent interest.

[1]  G. Milburn,et al.  Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  O. Albouy,et al.  A unified approach to SIC-POVMs and MUBs , 2007 .

[4]  D. Kaszlikowski,et al.  Minimal qubit tomography , 2004, quant-ph/0405084.

[5]  Joseph M. Renes,et al.  Frames, Designs, and Spherical Codes in Quantum Information Theory , 2004 .

[6]  Markus Grassl,et al.  The monomial representations of the Clifford group , 2011, Quantum Inf. Comput..

[7]  A. J. Scott Tight informationally complete quantum measurements , 2006, quant-ph/0604049.

[8]  Vladimir I. Levenshtein,et al.  On designs in compact metric spaces and a universal bound on their size , 1998, Discret. Math..

[9]  Aidan Roy,et al.  Complex lines with restricted angles , 2013, 1306.0978.

[10]  A. Hayashi,et al.  Reexamination of optimal quantum state estimation of pure states (5 pages) , 2004, quant-ph/0410207.

[11]  D'enes Petz,et al.  Optimal quantum-state tomography with known parameters , 2012, 1511.06666.

[12]  J. J. Seidel,et al.  Equilateral point sets in elliptic geometry , 1966 .

[13]  Lin Chen Length of separable states and symmetrical informationally complete (SIC) POVM , 2013 .

[14]  G. Zauner,et al.  QUANTUM DESIGNS: FOUNDATIONS OF A NONCOMMUTATIVE DESIGN THEORY , 2011 .

[15]  Isaac H. Kim Quantumness, generalized 2-desing and symmetric informationally complete POVM , 2007, Quantum Inf. Comput..

[16]  P. Casazza THE ART OF FRAME THEORY , 1999, math/9910168.

[17]  Aidan Roy,et al.  Equiangular lines, mutually unbiased bases, and spin models , 2009, Eur. J. Comb..

[18]  Alexander Wilce Symmetry, Self-Duality and the Jordan Structure of Quantum Mechanics , 2011, 1110.6607.

[19]  S. G. Hoggar,et al.  t-Designs in Projective Spaces , 1982, Eur. J. Comb..

[20]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[21]  Ruediger Schack,et al.  Quantum-Bayesian Coherence , 2009, 1301.3274.

[22]  W. Wootters Quantum Measurements and Finite Geometry , 2004, quant-ph/0406032.

[23]  D. M. Appleby SIC‐POVMS and MUBS: Geometrical Relationships in Prime Dimension , 2009 .

[24]  Lin Chen,et al.  Connections of geometric measure of entanglement of pure symmetric states to quantum state estimation , 2010, 1010.2361.

[25]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[26]  A. J. Scott,et al.  Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .

[27]  Gerard J. Milburn,et al.  Geometry of quantum states: an introduction to quantum entanglement by Ingemar Bengtsson and Karol Zyczkowski , 2006, Quantum Inf. Comput..

[28]  Alexander Wilce Four and a Half Axioms for Finite Dimensional Quantum Mechanics , 2009, 0912.5530.

[29]  Markus Grassl Tomography of Quantum States in Small Dimensions , 2005, Electron. Notes Discret. Math..

[30]  Mahdad Khatirinejad Fard Regular structures of lines in complex spaces , 2008 .

[31]  Eiichi Bannai,et al.  A survey on spherical designs and algebraic combinatorics on spheres , 2009, Eur. J. Comb..

[32]  K. Życzkowski,et al.  ON MUTUALLY UNBIASED BASES , 2010, 1004.3348.

[33]  Ingemar Bengtsson,et al.  MUBs, Polytopes, and Finite Geometries , 2004, quant-ph/0406174.

[34]  Howard Barnum,et al.  Local Tomography and the Jordan Structure of Quantum Theory , 2012, 1202.4513.

[35]  Denes Petz,et al.  Efficient quantum tomography needs complementary and symmetric measurements , 2010, 1011.5210.

[36]  Markus Grassl,et al.  Computing Equiangular Lines in Complex Space , 2008, MMICS.

[37]  Aephraim M. Steinberg,et al.  Experimental characterization of qutrits using symmetric informationally complete positive operator-valued measurements , 2011 .

[38]  Xinhua Peng,et al.  Realization of entanglement-assisted qubit-covariant symmetric-informationally-complete positive-operator-valued measurements , 2006 .

[39]  Joe Harris,et al.  Representation Theory: A First Course , 1991 .

[40]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[41]  D. M. Appleby,et al.  Properties of QBist State Spaces , 2009, 0910.2750.

[42]  C. Fuchs QBism, the Perimeter of Quantum Bayesianism , 2010, 1003.5209.

[43]  Amir Kalev,et al.  Experimental proposal for symmetric minimal two-qubit state tomography , 2012 .

[44]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .

[45]  C. Fuchs Quantum mechanics as quantum information, mostly , 2003 .

[46]  Dagomir Kaszlikowski,et al.  Efficient and robust quantum key distribution with minimal state tomography , 2008 .

[47]  Christopher A. Fuchs,et al.  Symmetric Informationally-Complete Quantum States as Analogues to Orthonormal Bases and Minimum-Uncertainty States , 2007, Entropy.

[48]  David Marcus Appleby,et al.  The Lie Algebraic Significance of Symmetric Informationally Complete Measurements , 2009, 1001.0004.

[49]  G. Milburn,et al.  Qudit Entanglement , 2000, quant-ph/0001075.

[50]  D. M. Appleby Symmetric informationally complete measurements of arbitrary rank , 2007 .

[51]  David Marcus Appleby,et al.  Galois automorphisms of a symmetric measurement , 2012, Quantum Inf. Comput..

[52]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[53]  Y. S. Teo,et al.  Two-qubit symmetric informationally complete positive-operator-valued measures , 2010 .

[54]  S. G. Hoggar,et al.  t-Designs with general angle set , 1992, Eur. J. Comb..

[55]  J. Seidel,et al.  BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .

[56]  D. Kaszlikowski,et al.  Highly Efficient Quantum Key Distribution With Minimal State Tomography , 2004 .

[57]  A. Robert Calderbank,et al.  The Finite Heisenberg-Weyl Groups in Radar and Communications , 2006, EURASIP J. Adv. Signal Process..

[58]  M. Grassl On SIC-POVMs and MUBs in Dimension 6 , 2004, quant-ph/0406175.

[59]  Christian Kurtsiefer,et al.  Accuracy of minimal and optimal qubit tomography for finite- length experiments , 2008 .

[60]  P. Seymour,et al.  Averaging sets: A generalization of mean values and spherical designs , 1984 .

[61]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[62]  T. Durt,et al.  Wigner tomography of two-qubit states and quantum cryptography , 2008, 0806.0272.

[63]  Amir Kalev,et al.  Symmetric minimal quantum tomography by successive measurements , 2012 .

[64]  Huangjun Zhu,et al.  Quantum state tomography with fully symmetric measurements and product measurements , 2011 .

[65]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[66]  Huangjun Zhu SIC POVMs and Clifford groups in prime dimensions , 2010, 1003.3591.

[67]  Masahide Sasaki,et al.  Squeezing quantum information through a classical channel: measuring the "quantumness" of a set of quantum states , 2003, Quantum Inf. Comput..

[68]  D. M. Appleby Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .

[69]  Barry C. Sanders,et al.  Optimal fingerprinting strategies with one-sided error , 2005, Quantum Inf. Comput..

[70]  Joseph M. Renes,et al.  Equiangular spherical codes in quantum cryptography , 2004, Quantum Inf. Comput..

[71]  G. Tabia,et al.  Experimental scheme for qubit and qutrit symmetric informationally complete positive operator-valued measurements using multiport devices , 2012 .

[72]  G. D’Ariano,et al.  Bell measurements and observables , 2000, quant-ph/0005121.

[73]  J. V. Corbett,et al.  About SIC POVMs and discrete Wigner distributions , 2005 .

[74]  I. D. Ivonovic Geometrical description of quantal state determination , 1981 .

[75]  A. J. Scott,et al.  Weighted complex projective 2-designs from bases : Optimal state determination by orthogonal measurements , 2007, quant-ph/0703025.