Group theoretic, lie algebraic and Jordan algebraic formulations of the sic existence problem
暂无分享,去创建一个
Christopher A. Fuchs | David Marcus Appleby | Huangjun Zhu | D. M. Appleby | Huangjun Zhu | C. Fuchs
[1] G. Milburn,et al. Universal state inversion and concurrence in arbitrary dimensions , 2001, quant-ph/0102040.
[2] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[3] O. Albouy,et al. A unified approach to SIC-POVMs and MUBs , 2007 .
[4] D. Kaszlikowski,et al. Minimal qubit tomography , 2004, quant-ph/0405084.
[5] Joseph M. Renes,et al. Frames, Designs, and Spherical Codes in Quantum Information Theory , 2004 .
[6] Markus Grassl,et al. The monomial representations of the Clifford group , 2011, Quantum Inf. Comput..
[7] A. J. Scott. Tight informationally complete quantum measurements , 2006, quant-ph/0604049.
[8] Vladimir I. Levenshtein,et al. On designs in compact metric spaces and a universal bound on their size , 1998, Discret. Math..
[9] Aidan Roy,et al. Complex lines with restricted angles , 2013, 1306.0978.
[10] A. Hayashi,et al. Reexamination of optimal quantum state estimation of pure states (5 pages) , 2004, quant-ph/0410207.
[11] D'enes Petz,et al. Optimal quantum-state tomography with known parameters , 2012, 1511.06666.
[12] J. J. Seidel,et al. Equilateral point sets in elliptic geometry , 1966 .
[13] Lin Chen. Length of separable states and symmetrical informationally complete (SIC) POVM , 2013 .
[14] G. Zauner,et al. QUANTUM DESIGNS: FOUNDATIONS OF A NONCOMMUTATIVE DESIGN THEORY , 2011 .
[15] Isaac H. Kim. Quantumness, generalized 2-desing and symmetric informationally complete POVM , 2007, Quantum Inf. Comput..
[16] P. Casazza. THE ART OF FRAME THEORY , 1999, math/9910168.
[17] Aidan Roy,et al. Equiangular lines, mutually unbiased bases, and spin models , 2009, Eur. J. Comb..
[18] Alexander Wilce. Symmetry, Self-Duality and the Jordan Structure of Quantum Mechanics , 2011, 1110.6607.
[19] S. G. Hoggar,et al. t-Designs in Projective Spaces , 1982, Eur. J. Comb..
[20] R. Duffin,et al. A class of nonharmonic Fourier series , 1952 .
[21] Ruediger Schack,et al. Quantum-Bayesian Coherence , 2009, 1301.3274.
[22] W. Wootters. Quantum Measurements and Finite Geometry , 2004, quant-ph/0406032.
[23] D. M. Appleby. SIC‐POVMS and MUBS: Geometrical Relationships in Prime Dimension , 2009 .
[24] Lin Chen,et al. Connections of geometric measure of entanglement of pure symmetric states to quantum state estimation , 2010, 1010.2361.
[25] Joseph M. Renes,et al. Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.
[26] A. J. Scott,et al. Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .
[27] Gerard J. Milburn,et al. Geometry of quantum states: an introduction to quantum entanglement by Ingemar Bengtsson and Karol Zyczkowski , 2006, Quantum Inf. Comput..
[28] Alexander Wilce. Four and a Half Axioms for Finite Dimensional Quantum Mechanics , 2009, 0912.5530.
[29] Markus Grassl. Tomography of Quantum States in Small Dimensions , 2005, Electron. Notes Discret. Math..
[30] Mahdad Khatirinejad Fard. Regular structures of lines in complex spaces , 2008 .
[31] Eiichi Bannai,et al. A survey on spherical designs and algebraic combinatorics on spheres , 2009, Eur. J. Comb..
[32] K. Życzkowski,et al. ON MUTUALLY UNBIASED BASES , 2010, 1004.3348.
[33] Ingemar Bengtsson,et al. MUBs, Polytopes, and Finite Geometries , 2004, quant-ph/0406174.
[34] Howard Barnum,et al. Local Tomography and the Jordan Structure of Quantum Theory , 2012, 1202.4513.
[35] Denes Petz,et al. Efficient quantum tomography needs complementary and symmetric measurements , 2010, 1011.5210.
[36] Markus Grassl,et al. Computing Equiangular Lines in Complex Space , 2008, MMICS.
[37] Aephraim M. Steinberg,et al. Experimental characterization of qutrits using symmetric informationally complete positive operator-valued measurements , 2011 .
[38] Xinhua Peng,et al. Realization of entanglement-assisted qubit-covariant symmetric-informationally-complete positive-operator-valued measurements , 2006 .
[39] Joe Harris,et al. Representation Theory: A First Course , 1991 .
[40] Lloyd R. Welch,et al. Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[41] D. M. Appleby,et al. Properties of QBist State Spaces , 2009, 0910.2750.
[42] C. Fuchs. QBism, the Perimeter of Quantum Bayesianism , 2010, 1003.5209.
[43] Amir Kalev,et al. Experimental proposal for symmetric minimal two-qubit state tomography , 2012 .
[44] E. Wigner,et al. Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .
[45] C. Fuchs. Quantum mechanics as quantum information, mostly , 2003 .
[46] Dagomir Kaszlikowski,et al. Efficient and robust quantum key distribution with minimal state tomography , 2008 .
[47] Christopher A. Fuchs,et al. Symmetric Informationally-Complete Quantum States as Analogues to Orthonormal Bases and Minimum-Uncertainty States , 2007, Entropy.
[48] David Marcus Appleby,et al. The Lie Algebraic Significance of Symmetric Informationally Complete Measurements , 2009, 1001.0004.
[49] G. Milburn,et al. Qudit Entanglement , 2000, quant-ph/0001075.
[50] D. M. Appleby. Symmetric informationally complete measurements of arbitrary rank , 2007 .
[51] David Marcus Appleby,et al. Galois automorphisms of a symmetric measurement , 2012, Quantum Inf. Comput..
[52] J. Seidel,et al. Spherical codes and designs , 1977 .
[53] Y. S. Teo,et al. Two-qubit symmetric informationally complete positive-operator-valued measures , 2010 .
[54] S. G. Hoggar,et al. t-Designs with general angle set , 1992, Eur. J. Comb..
[55] J. Seidel,et al. BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS , 1975 .
[56] D. Kaszlikowski,et al. Highly Efficient Quantum Key Distribution With Minimal State Tomography , 2004 .
[57] A. Robert Calderbank,et al. The Finite Heisenberg-Weyl Groups in Radar and Communications , 2006, EURASIP J. Adv. Signal Process..
[58] M. Grassl. On SIC-POVMs and MUBs in Dimension 6 , 2004, quant-ph/0406175.
[59] Christian Kurtsiefer,et al. Accuracy of minimal and optimal qubit tomography for finite- length experiments , 2008 .
[60] P. Seymour,et al. Averaging sets: A generalization of mean values and spherical designs , 1984 .
[61] W. Wootters,et al. Optimal state-determination by mutually unbiased measurements , 1989 .
[62] T. Durt,et al. Wigner tomography of two-qubit states and quantum cryptography , 2008, 0806.0272.
[63] Amir Kalev,et al. Symmetric minimal quantum tomography by successive measurements , 2012 .
[64] Huangjun Zhu,et al. Quantum state tomography with fully symmetric measurements and product measurements , 2011 .
[65] I. Olkin,et al. Inequalities: Theory of Majorization and Its Applications , 1980 .
[66] Huangjun Zhu. SIC POVMs and Clifford groups in prime dimensions , 2010, 1003.3591.
[67] Masahide Sasaki,et al. Squeezing quantum information through a classical channel: measuring the "quantumness" of a set of quantum states , 2003, Quantum Inf. Comput..
[68] D. M. Appleby. Symmetric informationally complete–positive operator valued measures and the extended Clifford group , 2005 .
[69] Barry C. Sanders,et al. Optimal fingerprinting strategies with one-sided error , 2005, Quantum Inf. Comput..
[70] Joseph M. Renes,et al. Equiangular spherical codes in quantum cryptography , 2004, Quantum Inf. Comput..
[71] G. Tabia,et al. Experimental scheme for qubit and qutrit symmetric informationally complete positive operator-valued measurements using multiport devices , 2012 .
[72] G. D’Ariano,et al. Bell measurements and observables , 2000, quant-ph/0005121.
[73] J. V. Corbett,et al. About SIC POVMs and discrete Wigner distributions , 2005 .
[74] I. D. Ivonovic. Geometrical description of quantal state determination , 1981 .
[75] A. J. Scott,et al. Weighted complex projective 2-designs from bases : Optimal state determination by orthogonal measurements , 2007, quant-ph/0703025.