The organization of bacteriochlorophyll c in chlorosomes from Chloroflexus aurantiacus and the structural role of carotenoids and protein

[1]  R. Cogdell,et al.  Characterization of the light harvesting antennas of photosynthetic purple bacteria by Stark spectroscopy: 2. LH2 complexes: Influence of the protein environment. , 1997 .

[2]  S. Boxer,et al.  Characterization of the Light-Harvesting Antennas of Photosynthetic Purple Bacteria by Stark Spectroscopy. 1. LH1 Antenna Complex and the B820 Subunit from Rhodospirillum rubrum , 1997 .

[3]  G. Small,et al.  Direct Observation and Hole Burning of the Lowest Exciton Level (B870) of the LH2 Antenna Complex of Rhodopseudomonas acidophila (Strain 10050) , 1997 .

[4]  O. Somsen,et al.  Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins. , 1996, Biophysical journal.

[5]  N. Hush,et al.  Vibrational Stark Spectroscopy. 1. Basic Theory and Application to the CO Stretch , 1995 .

[6]  S. Krawczyk,et al.  Solvent effects and vibrational dependence in electrochromic spectra of carotenoids , 1995 .

[7]  V. Sundström,et al.  Energy transfer and trapping in photosynthesis , 1994 .

[8]  A. Holzwarth,et al.  On the structure of bacteriochlorophyll molecular aggregates in the chlorosomes of green bacteria. A molecular modelling study , 1994, Photosynthesis Research.

[9]  J. Oelze,et al.  Bacteriochlorophyllc formation and chlorosome development inChloroflexus aurantiacus , 1994, Photosynthesis Research.

[10]  H. Zuber,et al.  Giant circular dichroism of chlorosomes fromChloroflexus aurantiacus treated with 1-hexanol and proteolytic enzymes , 1994, Photosynthesis Research.

[11]  S. Boxer,et al.  Stark effect (electroabsorption) spectroscopy of photosynthetic reaction centers at 1.5K: Evidence that the special pair has a large excited-state polarizability , 1993 .

[12]  M. Mimuro,et al.  SPECTRAL FORMS AND ORIENTATION OF BACTERIOCHLOROPHYLLS c AND α IN CHLOROSOMES OF THE GREEN PHOTOSYNTHETIC BACTERIUM Chloroflexus aurantiacus , 1993 .

[13]  J. Olson,et al.  Localization of polypeptides in isolated chlorosomes from green phototrophic bacteria by immuno-gold labeling electron microscopy , 1991 .

[14]  K. Griebenow,et al.  Pigment organization and energy transfer in green bacteria. 3. Picosecond energy transfer kinetics within the B806-866 bacteriochlorophyll a antenna complex isolated from Chloroflexus aurantiacus* , 1991 .

[15]  S. Boxer,et al.  Stark effect spectroscopy of carotenoids in photosynthetic antenna and reaction center complexes. , 1991, Biochimica et biophysica acta.

[16]  S. Boxer,et al.  Stark effect spectroscopy of bacteriochlorophyll in light-harvesting complexes from photosynthetic bacteria , 1991 .

[17]  K. Griebenow,et al.  Pigment organization and energy transfer in green bacteria. 2. Circular and linear dichroism spectra of protein-containing and protein-free chlorosomes isolated from Chloroflexus aurantiacus strain Ok-70-fl , 1991 .

[18]  R. Grondelle,et al.  Polarized fluorescence measurements on ordered photosynthetic antenna complexes: Chlorosomes of Chloroflexus aurantiacus and B800-B850 antenna complexes of Rhodobacter sphaeroides , 1991 .

[19]  S. Krawczyk Electrochromism of chlorophyll a monomer and special pair dimer , 1991 .

[20]  R. van Grondelle,et al.  Linear dichroism of chlorosomes from chloroflexus aurantiacus in compressed gels and electric fields. , 1988, Biophysical journal.

[21]  D. Lockhart,et al.  Magnitude and direction of the change in dipole moment associated with excitation of the primary electron donor in Rhodopseudomonas sphaeroides reaction centers , 1987 .

[22]  H. Zuber,et al.  The complete amino acid sequence of the bacteriochlorophyll c binding polypeptide from chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus , 1985 .

[23]  Fok Mv,et al.  Analysis of the linear dichroism of reaction centers oriented in polyacrylamide gel , 1980 .

[24]  L. Stryer,et al.  Retinal has a highly dipolar vertically excited singlet state: implications for vision. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[25]  J. Amesz,et al.  Pigment organization and energy transfer in the green photosynthetic bacterium Chloroflexus aurantiacus , 2004, Photosynthesis Research.

[26]  S. Boxer Stark Spectroscopy of Photosynthetic Systems , 1996 .

[27]  J. Olson,et al.  Antenna Complexes from Green Photosynthetic Bacteria , 1995 .

[28]  J. Oelze,et al.  Membranes and Chlorosomes of Green Bacteria: Structure, Composition and Development , 1995 .

[29]  I. Yamazaki,et al.  Molecular Networks and Funneling Process of Energy Transfer in Green Photosynthetic Bacteria , 1995 .

[30]  J. Oelze,et al.  Bacteriochlorophyll c formation and chlorosome development in Chloroflexus aurantiacus , 1994 .

[31]  H. Zuber,et al.  Giant circular dichroism of chlorosomes from Chloroflexus treated with 1-hexanol and proteolytic enzymes , 1994 .

[32]  M. Madigan,et al.  Structures and organization of bacteriochlorophyll c's in chlorosomes from a new thermophilic bacterium Chlorobium tepidum , 1993 .

[33]  R. van Grondelle,et al.  Polarized fluorescence measurements on ordered photosynthetic antenna complexes: Chlorosomes of Chloroflexus aurantiacus and B800-B850 antenna complexes of Rhodobacter sphaeroides. , 1991, Biophysical journal.

[34]  A. Solov'ev,et al.  [Analysis of the linear dichroism of reaction centers oriented in polyacrylamide gel]. , 1980, Molekuliarnaia biologiia.

[35]  Wolfgang Liptay,et al.  Dipole Moments and Polarizabilities of Molecules in Excited Electronic States , 1974 .