On some difficult linear programs coming from set partitioning

We deal with the linear programming relaxation of set partitioning problems arising in airline crew scheduling. Some of these linear programs have been extremely difficult to solve with the traditional algorithms. We have used an extension of the subgradient algorithm, the volume algorithm, to produce primal solutions that might violate the constraints by at most 2%, and that are within 1% of the lower bound. This method is fast, requires minimal storage, and can be parallelized in a straightforward way.

[1]  Philip Wolfe,et al.  Validation of subgradient optimization , 1974, Math. Program..

[2]  H. Sherali,et al.  On the choice of step size in subgradient optimization , 1981 .

[3]  K. Kiwiel The Efficiency of Subgradient Projection Methods for Convex Optimization , 1996 .

[4]  Richard M. Karp,et al.  The traveling-salesman problem and minimum spanning trees: Part II , 1971, Math. Program..

[5]  Yu. M. Ermol’ev Methods of solution of nonlinear extremal problems , 1966 .

[6]  Andrew V. Goldberg,et al.  An Implementation of a Combinatorial Approximation Algorithm for Minimum-Cost Multicommodity Flow , 1998, IPCO.

[7]  A. Kulikov,et al.  Convex optimization with prescribed accuracy , 1990 .

[8]  Jeffery L. Kennington,et al.  A generalization of Polyak's convergence result for subgradient optimization , 1987, Math. Program..

[9]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[10]  Ellis L. Johnson,et al.  A Global Approach to Crew-Pairing Optimization , 1992, IBM Syst. J..

[11]  P. Camerini,et al.  On improving relaxation methods by modified gradient techniques , 1975 .

[12]  C. Lemaréchal Nondifferentiable optimization , 1989 .

[13]  P. Wolfe Note on a method of conjugate subgradients for minimizing nondifferentiable functions , 1974 .

[14]  Antonio Sassano,et al.  A Lagrangian-based heuristic for large-scale set covering problems , 1998, Math. Program..

[15]  J. Goffin CONVERGENCE RESULTS IN A CLASS OF VARIABLE METRIC SUBGRADIENT METHODS , 1981 .

[16]  Francisco Barahona,et al.  The volume algorithm: producing primal solutions with a subgradient method , 2000, Math. Program..

[17]  Matteo Fischetti,et al.  A Heuristic Method for the Set Covering Problem , 1999, Oper. Res..

[18]  Torbjörn Larsson,et al.  The Efficiency of Ballstep Subgradient Level Methods for Convex Optimization , 1999, Math. Oper. Res..

[19]  Richard M. Karp,et al.  The Traveling-Salesman Problem and Minimum Spanning Trees , 1970, Oper. Res..

[20]  Javier Etcheberry,et al.  The Set-Covering Problem: A New Implicit Enumeration Algorithm , 1977, Oper. Res..

[21]  K. Kiwiel The efficiency of subgradient projection methods for convex optimization, part I: general level methods , 1996 .

[22]  Andrew C. Ho,et al.  Set covering algorithms using cutting planes, heuristics, and subgradient optimization: A computational study , 1980 .

[23]  Sehun Kim,et al.  Variable target value subgradient method , 1991, Math. Program..

[24]  Boris Polyak Minimization of unsmooth functionals , 1969 .

[25]  Jean-Louis Goffin,et al.  On convergence rates of subgradient optimization methods , 1977, Math. Program..