Computing Multivariate Normal Probabilities: A New Look

This article describes and compares several numerical methods for finding multivariate probabilities over a rectangle. A large computational study shows how the computation times depend on the problem dimensions, the correlation structure, the magnitude of the sought probability, and the required accuracy. No method is uniformly best for all problems and—unlike previous work—this article gives some guidelines to help establish the most promising method a priori. Numerical tests were conducted on approximately 3,000 problems generated randomly in up to 20 dimensions. Our findings indicate that direct integration methods give acceptable results for up to 12-dimensional problems, provided that the probability mass of the rectangle is not too large (less than about 0.9). For problems with small probabilities (less than 0.3) a crude Monte Carlo method gives reasonable results quickly, while bounding procedures perform best on problems with large probabilities (> 0.9). For larger problems numerical integration ...

[1]  Frank Bretz,et al.  Comparison of Methods for the Computation of Multivariate t Probabilities , 2002 .

[2]  H. Gassmann Conditional Probability and Conditional Expectation of a Random Vector , 1988 .

[3]  Bernard Harris,et al.  The use of the tetrachoric series for evaluating multivariate normal probabilities , 1980 .

[4]  Y. L. Tong The multivariate normal distribution , 1989 .

[5]  Tamás Szántai,et al.  Evaluation of a special multivariate gamma distribution function , 1986 .

[6]  Terje O. Espelid,et al.  Algorithm 698: DCUHRE: an adaptive multidemensional integration routine for a vector of integrals , 1991, TOMS.

[7]  M. Schervish Multivariate normal probabilities with error bound , 1984 .

[8]  T. Donnelly,et al.  Algorithm 462: bivariate normal distribution , 1973 .

[9]  John F. Hart,et al.  Computer Approximations , 1978 .

[10]  U. Böckenholt Thurstonian representation for partial ranking data , 1992 .

[11]  András Prékopa,et al.  Probability Bounds with Cherry Trees , 2001, Math. Oper. Res..

[12]  I. Olkin,et al.  Generating Correlation Matrices , 1984 .

[13]  A. Genz Numerical Computation of Multivariate Normal Probabilities , 1992 .

[14]  J A Anderson,et al.  The grouped continuous model for multivariate ordered categorical variables and covariate adjustment. , 1985, Biometrics.

[15]  István Deák,et al.  Three digit accurate multiple normal probabilities , 1980 .

[16]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[17]  P. N. Somerville Numerical Computation of Multivariate Normal and Multivariate-t Probabilities over Convex Regions , 1998 .

[18]  István Deák Probabilities of simple n -dimensional sets for the normal distribution , 2003 .

[19]  S. Gupta Probability Integrals of Multivariate Normal and Multivariate $t^1$ , 1963 .

[20]  A. I. Saltykov Tables for the computation of multiple integrals using the method of optimal coefficients , 1963 .

[21]  K. Worsley An improved Bonferroni inequality and applications , 1982 .

[22]  István Deák,et al.  Random Number Generators and Simulation , 1990 .

[23]  H. Joe Approximations to Multivariate Normal Rectangle Probabilities Based on Conditional Expectations , 1995 .

[24]  M. G. Kendall,et al.  iv) Proof of Relations connected with the Tetrachoric Series and its Generalization , 1941 .

[25]  A. Prékopa PROGRAMMING UNDER PROBABILISTIC CONSTRAINTS WITH A RANDOM TECHNOLOGY MATRIX , 1974 .

[26]  G. O. Wesolowsky,et al.  On the computation of the bivariate normal integral , 1990 .

[27]  P. Keast,et al.  Optimal Parameters for Multidimensional Integration , 1973 .

[28]  Paul A. Ruud,et al.  Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results , 1996 .

[29]  T. Szántai Improved Bounds and Simulation Procedures on the Value of the Multivariate Normal Probability Distribution Function , 2000, Ann. Oper. Res..

[30]  Ross L. Prentice,et al.  Likelihood inference in a correlated probit regression model , 1984 .

[31]  Ioan Tomescu,et al.  Hypertrees and Bonferroni inequalities , 1986, J. Comb. Theory, Ser. B.

[32]  I. D. Hill,et al.  Algorithm 304: Normal curve integral , 1967, CACM.

[33]  A. Prékopa,et al.  Flood control reservoir system design using stochastic programming , 1978 .

[34]  Paul A. Ruud,et al.  Simulation of Multivariate Normal Rectangle Probabilities: Theoretical and Computational Results , 1994 .

[35]  Wim P. M. Vijverberg,et al.  Monte Carlo evaluation of multivariate normal probabilities , 1997 .