Detection of Hermitian connections in wave equations with cubic non-linearity

We consider the geometric non-linear inverse problem of recovering a Hermitian connection $A$ from the source-to-solution map of the cubic wave equation $\Box_{A}\phi+\kappa |\phi|^{2}\phi=f$, where $\kappa\neq 0$ and $\Box_{A}$ is the connection wave operator in the Minkowski space $\mathbb{R}^{1+3}$. The equation arises naturally when considering the Yang-Mills-Higgs equations with Mexican hat type potentials. Our proof exploits the microlocal analysis of nonlinear wave interactions, but instead of employing information contained in the geometry of the wave front sets as in previous literature, we study the principal symbols of waves generated by suitable interactions. Moreover, our approach relies on inversion of a novel non-abelian broken light ray transform.

[1]  Tosio Kato,et al.  Quasi-linear equations of evolution, with applications to partial differential equations , 1975 .

[2]  J. Bony Second Microlocalization and Propagation of Singularities for Semi-Linear Hyperbolic Equations , 1986 .

[3]  Antonio N. Bernal,et al.  Communications in Mathematical Physics Smoothness of Time Functions and the Metric Splitting of Globally Hyperbolic Spacetimes , 2005 .

[4]  Michael E. Taylor,et al.  Boundary regularity for the Ricci equation, geometric convergence, and Gel’fand’s inverse boundary problem , 2002, math/0211376.

[5]  Gunther Uhlmann,et al.  Lagrangian Intersection and the Cauchy Problem , 1979 .

[6]  G. Uhlmann,et al.  Determination of structures in the space-time from local measurements: a detailed exposition , 2013, 1305.1739.

[7]  Matti Lassas,et al.  Determination of vacuum space-times from the Einstein-Maxwell equations , 2017, 1703.10704.

[8]  Tunc Geveci,et al.  Advanced Calculus , 2014, Nature.

[9]  Gunther Uhlmann,et al.  Recovering singularities of a potential from singularities of scattering data , 1993 .

[10]  Y. Egorov,et al.  Fourier Integral Operators , 1994 .

[11]  Niles Ritter,et al.  Interaction of nonlinear progressing waves for semilinear wave equations , 1985 .

[12]  Jeffrey Rauch,et al.  Singularities produced by the nonlinear interaction of three progressing waves;,examples , 1982 .

[13]  A. Bernal,et al.  Globally hyperbolic spacetimes can be defined as ‘causal’ instead of ‘strongly causal’ , 2006, gr-qc/0611138.

[14]  Karen K. Uhlenbeck VARIATIONAL PROBLEMS FOR GAUGE FIELDS , 1982 .

[15]  Lauri Oksanen,et al.  Inverse problems for the connection Laplacian , 2015, Journal of Differential Geometry.

[16]  Par S. Alinhac Non-unicite du probleme de Cauchy , 1983 .

[17]  M. Lassas,et al.  Hyperbolic inverse problem with data on disjoint sets , 2016, 1602.03626.

[18]  G. Uhlmann,et al.  Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations , 2014, 1405.3386.

[19]  M. Lassas,et al.  Inverse problem for the Riemannian wave equation with Dirichlet data and Neumann data on disjoint sets , 2012, 1208.2105.

[20]  Jian Wang,et al.  Introduction to the Standard Model of Particle Physics , 2016 .

[21]  Tataru Daniel,et al.  Unique continuation for solutions to pde's; between hörmander's theorem and holmgren' theorem , 1995 .

[22]  Matti Lassas,et al.  Inverse problems in spacetime I: Inverse problems for Einstein equations - Extended preprint version , 2014, 1405.4503.

[23]  M. Lassas,et al.  Inverse Boundary Spectral Problems , 2001 .

[24]  Ricardo Salazar Determination of time-dependent coefficients for a hyperbolic inverse problem , 2010, 1009.4003.

[25]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[26]  M. Lassas INVERSE PROBLEMS FOR LINEAR AND NON-LINEAR HYPERBOLIC EQUATIONS , 2019, Proceedings of the International Congress of Mathematicians (ICM 2018).

[27]  Hung-Hsi Wu,et al.  General Relativity for Mathematicians , 1983 .

[28]  M. I. Belishev,et al.  To the reconstruction of a Riemannian manifold via its spectral data (BC-method) , 1992 .

[29]  Jerrold E. Marsden,et al.  Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity , 1977 .

[30]  Matti Lassas,et al.  Inverse Problems for Semilinear Wave Equations on Lorentzian Manifolds , 2016, 1606.06261.

[31]  High-energy limits of Laplace-type and Dirac-type eigenfunctions and frame flows , 2006 .

[32]  Loring W. Tu,et al.  Differential forms in algebraic topology , 1982, Graduate texts in mathematics.