Numerical and Analytical Analyses of a High Temperature Heat Exchanger
暂无分享,去创建一个
In this paper some analytical and numeric analyses of a high temperature heat exchanger are performed. This heat exchanger should be employed in a test loop of a EFCC (Externally Fired Combined Cycle), placed in a experimental facility owned by the Italian electric utility, ENEL. The heat exchanger is the crucial element in this cycle, as it undergoes temperatures above 1000°C and pressures of about 7 bars. The enthalpy of the combustion products of low cost fuels, such as coal, bottom tar, residuals from refineries, is used to heat a clean working fluid, in this case pressurized air. There are some outstanding benefits for the turbine, in regard to the manufacturing and maintenance costs, and also for its life. The heat transfer components are some bayonet tubes, assembled in 4 modules. A half of them is made of ceramic materials, the others of an advanced metallic material (ODS), due to the burdensome operating conditions. First of all, the heat exchanges are evaluated by means of a simplified analytical model. The radiant contribution also has been taken into account, due to the presence of non-transparent gases. Subsequently, the in-tube fluid temperature increase is calculated for all the heat exchanger modules, through an enthalpy balance and with some simplifying assumptions. Moreover, a comparison is made between the analytical solution and the results of a numerical model implemented in a CFD code. A good agreement is found, which indicates that the analytical model is reasonably valid. In fact, the whole heat exchanger temperature change is determined by means of the two methods with a difference of about 7% for both the streams. Finally, these results are to be compared with the experimental data which should be available in the near future, when the facility will begin working. Also, by this way, the developed calculation model would get a validation.Copyright © 2006 by ASME