A minimal physical model captures the shapes of crawling cells

[1]  A. DeSimone,et al.  Spontaneous division and motility in active nematic droplets. , 2013, Physical review letters.

[2]  Igor S. Aranson,et al.  Effects of Adhesion Dynamics and Substrate Compliance on the Shape and Motility of Crawling Cells , 2013, PloS one.

[3]  J. Casademunt,et al.  Spontaneous motility of actin lamellar fragments. , 2013, Physical review letters.

[4]  W. Rappel,et al.  Alignment of cellular motility forces with tissue flow as a mechanism for efficient wound healing , 2013, Proceedings of the National Academy of Sciences.

[5]  Elsen Tjhung,et al.  Spontaneous symmetry breaking in active droplets provides a generic route to motility , 2012, Proceedings of the National Academy of Sciences.

[6]  Falko Ziebert,et al.  Model for self-polarization and motility of keratocyte fragments , 2012, Journal of The Royal Society Interface.

[7]  Wouter-Jan Rappel,et al.  Coupling actin flow, adhesion, and morphology in a computational cell motility model , 2012, Proceedings of the National Academy of Sciences.

[8]  M. Cates,et al.  Cytoplasmic streaming in plant cells: the role of wall slip , 2012, Journal of The Royal Society Interface.

[9]  Sriram Ramaswamy,et al.  A drop of active matter , 2012, Journal of Fluid Mechanics.

[10]  Justin Cooper-White,et al.  The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. , 2011, Biomaterials.

[11]  Julie A. Theriot,et al.  An Adhesion-Dependent Switch between Mechanisms That Determine Motile Cell Shape , 2011, PLoS biology.

[12]  A. Bausch,et al.  Structure formation in active networks. , 2011, Nature materials.

[13]  P. Chavrier,et al.  Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel , 2011, Proceedings of the National Academy of Sciences.

[14]  O. Bénichou,et al.  Spontaneous contractility-mediated cortical flow generates cell migration in three-dimensional environments. , 2010, Biophysical journal.

[15]  Wouter-Jan Rappel,et al.  Computational model for cell morphodynamics. , 2010, Physical review letters.

[16]  Marc Herant,et al.  Form and function in cell motility: from fibroblasts to keratocytes. , 2010, Biophysical journal.

[17]  Ken Jacobson,et al.  Actin-myosin viscoelastic flow in the keratocyte lamellipod. , 2009, Biophysical journal.

[18]  M. E. Cates,et al.  Lattice Boltzmann simulations of liquid crystalline fluids: active gels and blue phases , 2009, 1009.1153.

[19]  Julie A. Theriot,et al.  Intracellular fluid flow in rapidly moving cells , 2009, Nature Cell Biology.

[20]  A Lamura,et al.  Hybrid lattice Boltzmann model for binary fluid mixtures. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Julie A. Theriot,et al.  Mechanism of shape determination in motile cells , 2008, Nature.

[22]  A. Callan-Jones,et al.  Viscous-fingering-like instability of cell fragments. , 2008, Physical review letters.

[23]  Gaudenz Danuser,et al.  Actin–myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility , 2007, The Journal of cell biology.

[24]  M. Marchetti,et al.  Hydrodynamics and Rheology of Active Polar Filaments , 2007, q-bio/0703029.

[25]  S. Charette,et al.  Selective membrane exclusion in phagocytic and macropinocytic cups , 2006, Journal of Cell Science.

[26]  M. Dembo,et al.  Mechanics of neutrophil phagocytosis: experiments and quantitative models , 2006, Journal of Cell Science.

[27]  M. Marchetti,et al.  Hydrodynamics of polar liquid crystals. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Gaudenz Danuser,et al.  Tracking retrograde flow in keratocytes: news from the front. , 2005, Molecular biology of the cell.

[29]  M. Cates,et al.  Simulating colloid hydrodynamics with lattice Boltzmann methods , 2004, cond-mat/0404643.

[30]  F. Barry,et al.  Mesenchymal stem cells: clinical applications and biological characterization. , 2004, The international journal of biochemistry & cell biology.

[31]  J. Joanny,et al.  Asters, vortices, and rotating spirals in active gels of polar filaments. , 2004, Physical review letters.

[32]  K. Wennerberg,et al.  Integrin signaling to the actin cytoskeleton. , 2003, Current opinion in cell biology.

[33]  Sriram Ramaswamy,et al.  Rheology of active-particle suspensions. , 2003, Physical review letters.

[34]  Nigel Chaffey,et al.  Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. and Walter, P. Molecular biology of the cell. 4th edn. , 2003 .

[35]  J. Qin,et al.  Assembly of the PINCH-ILK-CH-ILKBP complex precedes and is essential for localization of each component to cell-matrix adhesion sites , 2002, Journal of Cell Science.

[36]  P. Fey,et al.  Phosphorylation of the myosin regulatory light chain plays a role in motility and polarity during Dictyostelium chemotaxis. , 2002, Journal of cell science.

[37]  Peter Friedl,et al.  Amoeboid leukocyte crawling through extracellular matrix: lessons from the Dictyostelium paradigm of cell movement , 2001, Journal of leukocyte biology.

[38]  Sriram Ramaswamy,et al.  Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. , 2001, Physical review letters.

[39]  M. Titus,et al.  A role for myosin VII in dynamic cell adhesion , 2001, Current Biology.

[40]  Marie-France Carlier,et al.  Reconstitution of actin-based motility of Listeria and Shigella using pure proteins , 1999, Nature.

[41]  Gary G. Borisy,et al.  Self-polarization and directional motility of cytoplasm , 1999, Current Biology.

[42]  Gary G. Borisy,et al.  Analysis of the Actin–Myosin II System in Fish Epidermal Keratocytes: Mechanism of Cell Body Translocation , 1997, The Journal of cell biology.

[43]  M. Ehrengruber,et al.  Shape oscillations of human neutrophil leukocytes: characterization and relationship to cell motility. , 1996, The Journal of experimental biology.

[44]  P. Gennes,et al.  The physics of liquid crystals , 1974 .

[45]  R. Hentschke Non-Equilibrium Thermodynamics , 2014 .

[46]  M. Yoneya,et al.  Physics of Liquid Crystals , 2014 .

[47]  Jelena Stajic,et al.  Redundant mechanisms for stable cell locomotion revealed by minimal models. , 2011, Biophysical journal.

[48]  K. Luby-Phelps,et al.  Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. , 2000, International review of cytology.

[49]  Dennis Bray,et al.  Cell Movements: From Molecules to Motility , 1992 .