Harmonic incursion at the point of common coupling due to small grid-connected power stations

Abstract The orthodox electric power distribution systems used to be generally radial and direction of flow of power was often from grid towards consumer. Sometimes, the transmission of power generated from newly set small power stations by using transmission network is not feasible due to the transmission losses, service cost on transmission lines and other related issues. That is why, in many cases, small power stations are connected directly to the local distribution network. These small power stations inject active and reactive power to the existing network, badly disturbing the flow of power hence injecting harmonics in the system at the point of common coupling (PCC). This harmonic injection at PCC due to a direct grid-connection of small power stations to the existing large electric power systems is identified. Also, the impact of harmonic incursion by these small generation units is analysed using a straightforward and an effortless method. This simulation based method uses power system components simplified to basic inductive and capacitive elements and can be very helpful for a fast assessment of harmonic incursion at PCC if extended to the practical large inter-connected electric power systems.