Subdifferential Calculus Rules in Convex Analysis: A Unifying Approach Via Pointwise Supremum Functions

We provide a rule to calculate the subdifferential set of the pointwise supremum of an arbitrary family of convex functions defined on a real locally convex topological vector space. Our formula is given exclusively in terms of the data functions and does not require any assumption either on the index set on which the supremum is taken or on the involved functions. Some other calculus rules, namely chain rule formulas of standard type, are obtained from our main result via new and direct proofs.

[1]  Arne Brondsted On the Subdifferential of the Supremum of Two Convex Functions. , 1972 .

[2]  Alberto Seeger,et al.  Subdifferential calculus without qualification conditions, using approximate subdifferentials: a survey , 1995 .

[3]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[4]  M. A. Goberna,et al.  Optimal value function in semi-infinite programming , 1988 .

[5]  Ewa Girejko,et al.  Subdifferentials of convex functions on time scales , 2010 .

[6]  R. Rockafellar Directionally Lipschitzian Functions and Subdifferential Calculus , 1979 .

[7]  Abderrahim Hantoute,et al.  Characterization of total ill-posedness in linear semi-infinite optimization , 2008 .

[8]  J. Danskin The Theory of Max-Min and its Application to Weapons Allocation Problems , 1967 .

[9]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[10]  M. Teboulle,et al.  Asymptotic cones and functions in optimization and variational inequalities , 2002 .

[11]  Constantin Zălinescu On several results about convex set functions , 2007 .

[12]  Florence Jules,et al.  Formulas for subdifferentials of sums of convex functions , 2002 .

[13]  B. N. Pshenichnyi Convex programming in a normalized space , 1965 .

[14]  R. Rockafellar 1. Conjugate Duality and Optimization , 1974 .

[15]  R. Rockafellar Conjugate Duality and Optimization , 1987 .

[16]  Lionel Thibault,et al.  Sequential Convex Subdifferential Calculus and Sequential Lagrange Multipliers , 1997 .

[17]  Dinh The Luc Recession cones and the domination property in vector optimization , 1991, Math. Program..

[18]  Jean-Paul Penot,et al.  Subdifferential Calculus Without Qualification Assumptions , 1996 .

[19]  Abderrahim Hantoute Subdifferential set of the supremum of lower semi-continuous convex functions and the conical hull intersection property , 2006 .

[20]  V. N. Solov'ev,et al.  The subdifferential and the directional derivatives of the maximum of a family of convex functions , 1998 .

[21]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[22]  Constantin Zălinescu,et al.  STABILITY FOR A CLASS OF NONLINEAR OPTIMIZATION PROBLEMS AND APPLICATIONS , 1989 .

[23]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[24]  M. Volle Sous-différentiel d'une enveloppe supérieure de fonctions convexes , 1993 .

[25]  R. Phelps Convex Functions, Monotone Operators and Differentiability , 1989 .