An effective finite-element-based method for the computation of nonlinear normal modes of nonconservative systems

This paper addresses the numerical computation of nonlinear normal modes defined as two-dimensional invariant manifolds in phase space. A novel finite-element-based algorithm, combining the streamline upwind Petrov–Galerkin method with mesh moving and domain prediction–correction techniques, is proposed to solve the manifold-governing partial differential equations. It is first validated using conservative examples through the comparison with a reference solution given by numerical continuation. The algorithm is then demonstrated on nonconservative examples.

[1]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[2]  Robert Bouc,et al.  A new formulation for the existence and calculation of nonlinear normal modes , 2005 .

[3]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[4]  Alexander F. Vakakis,et al.  Normal modes and localization in nonlinear systems , 1996 .

[5]  R. Seydel Practical Bifurcation and Stability Analysis , 1994 .

[6]  Thomas J. R. Hughes,et al.  Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations , 1984 .

[7]  Claes Johnson Finite element methods for flow problems , 1992 .

[8]  G. Folland Introduction to Partial Differential Equations , 1976 .

[9]  Walter Lacarbonara,et al.  Nonlinear normal modes of structural systems via asymptotic approach , 2004 .

[10]  Christophe Pierre,et al.  Nonlinear Normal Modes of a Rotating Shaft Based on the Invariant Manifold Method , 2002 .

[11]  Alexander F. Vakakis,et al.  Nonlinear normal modes, Part I: A useful framework for the structural dynamicist , 2009 .

[12]  Steven W. Shaw,et al.  Non-linear modal analysis of structural systems featuring internal resonances , 1995 .

[13]  Stig Larsson,et al.  Partial differential equations with numerical methods , 2003, Texts in applied mathematics.

[14]  Bruno Cochelin,et al.  Two methods for the computation of nonlinear modes of vibrating systems at large amplitudes , 2006 .

[15]  Alexander F. Vakakis,et al.  Complicated dynamics of a linear oscillator with a light, essentially nonlinear attachment , 2005 .

[16]  Jerzy Warminski,et al.  Nonlinear normal modes of a self-excited system driven by parametric and external excitations , 2010 .

[17]  Claes Johnson,et al.  Finite element methods for linear hyperbolic problems , 1984 .

[18]  D. Jianga,et al.  Large-amplitude non-linear normal modes of piecewise linear systems , 2004 .

[19]  Eric Pesheck,et al.  Reduced order modeling of nonlinear structural systems using nonlinear normal modes and invariant manifolds , 2000 .

[20]  Christophe Pierre,et al.  Nonlinear Modal Analysis of Structural Systems Using Multi-Mode Invariant Manifolds , 2001 .

[21]  Christophe Pierre,et al.  Normal Modes for Non-Linear Vibratory Systems , 1993 .

[22]  Andy J. Keane,et al.  Physics- and Engineering Knowledge-Based Repair of Computer-Aided Design Parametric Geometries , 2012 .

[23]  A. Huerta,et al.  Finite Element Methods for Flow Problems , 2003 .

[24]  Robert Bouc,et al.  An amplitude-phase formulation for nonlinear modes and limit cycles through invariant manifolds , 2007 .

[25]  Non-linear modal analysis of the forced response of structural systems , 1996 .

[26]  Christophe Pierre,et al.  The construction of non-linear normal modes for systems with internal resonance , 2005 .

[27]  Gaëtan Kerschen,et al.  Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques , 2009 .

[28]  Gaëtan Kerschen,et al.  Nonlinear Modal Analysis of a Full-Scale Aircraft , 2013 .

[29]  J. Craggs Applied Mathematical Sciences , 1973 .

[30]  R. M. Rosenberg,et al.  On Nonlinear Vibrations of Systems with Many Degrees of Freedom , 1966 .

[31]  Gaëtan Kerschen,et al.  Nonlinear Normal Modes of a Full-Scale Aircraft , 2011 .

[32]  Stefano Lenci,et al.  Dimension reduction of homoclinic orbits of buckled beams via the non-linear normal modes technique , 2007 .

[33]  Jean-François Mercier,et al.  On the numerical computation of nonlinear normal modes for reduced-order modelling of conservative vibratory systems , 2013 .

[34]  R. Rogers,et al.  An introduction to partial differential equations , 1993 .

[35]  Oleg Gendelman,et al.  Bifurcations of Nonlinear Normal Modes of Linear Oscillator with Strongly Nonlinear Damped Attachment , 2004 .

[36]  Claude-Henri Lamarque,et al.  Analysis of non-linear dynamical systems by the normal form theory , 1991 .

[37]  Christophe Pierre,et al.  Non-linear normal modes, invariance, and modal dynamics approximations of non-linear systems , 1995, Nonlinear Dynamics.

[38]  Antonio Huerta,et al.  Steady Transport Problems , 2005 .

[39]  Steven W. Shaw,et al.  Normal modes for piecewise linear vibratory systems , 1996 .

[40]  Cyril Touzé,et al.  Asymptotic non-linear normal modes for large-amplitude vibrations of continuous structures , 2004 .

[41]  C. Pierre,et al.  A NEW GALERKIN-BASED APPROACH FOR ACCURATE NON-LINEAR NORMAL MODES THROUGH INVARIANT MANIFOLDS , 2002 .

[42]  Michael L. Accorsi,et al.  Finite element mesh update methods for fluid-structure interaction simulations , 2004 .

[43]  Alexander F. Vakakis,et al.  NON-LINEAR NORMAL MODES (NNMs) AND THEIR APPLICATIONS IN VIBRATION THEORY: AN OVERVIEW , 1997 .

[44]  Marco Amabili,et al.  Nonlinear normal modes for damped geometrically nonlinear systems: Application to reduced-order modelling of harmonically forced structures , 2006 .

[45]  Christophe Pierre,et al.  Nonlinear normal modes for vibratory systems under harmonic excitation , 2005 .

[46]  Tayfun E. Tezduyar,et al.  Automatic mesh update with the solid-extension mesh moving technique , 2004 .

[47]  Denis Laxalde,et al.  Complex non-linear modal analysis for mechanical systems : Application to turbomachinery bladings with friction interfaces , 2009 .