A Student's Guide to Coding and Information Theory: List of contributors

This easy-to-read guide provides a concise introduction to the engineering background of modern communication systems, from mobile phones to data compression and storage. Background mathematics and specific engineering techniques are kept to a minimum so that only a basic knowledge of high-school mathematics is needed to understand the material covered. The authors begin with many practical applications in coding, including the repetition code, the Hamming code and the Huffman code. They then explain the corresponding information theory, from entropy and mutual information to channel capacity and the information transmission theorem. Finally, they provide insights into the connections between coding theory and other fields. Many worked examples are given throughout the book, using practical applications to illustrate theoretical definitions. Exercises are also included, enabling readers to double-check what they have learned and gain glimpses into more advanced topics, making this perfect for anyone who needs a quick introduction to the subject.

[1]  S. Wicker Error Control Systems for Digital Communication and Storage , 1994 .

[2]  David J. C. MacKay,et al.  Low-density parity check codes over GF(q) , 1998, IEEE Communications Letters.

[3]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[4]  Stephen B. Wicker,et al.  Turbo Coding , 1998 .

[5]  Shu Lin,et al.  Error Control Coding , 2004 .

[6]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[7]  R. Brualdi,et al.  Handbook Of Coding Theory , 2011 .

[8]  Robert J. McEliece,et al.  The reliability of computer memories , 1985 .

[9]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[10]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[11]  Aleksandr Yakovlevich Khinchin,et al.  Mathematical foundations of information theory , 1959 .

[12]  P. M. Woodward,et al.  Information theory and inverse probability in telecommunication , 1952 .

[13]  Douglas R. Stinson,et al.  Cryptography: Theory and Practice , 1995 .

[14]  R. Gallager Information Theory and Reliable Communication , 1968 .

[15]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[16]  V. Pless On the uniqueness of the Golay codes , 1968 .

[17]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[18]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[19]  Robert G. Gallager,et al.  Claude E. Shannon: A retrospective on his life, work, and impact , 2001, IEEE Trans. Inf. Theory.

[20]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[21]  John N. Tsitsiklis,et al.  Introduction to Probability , 2002 .

[22]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[23]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[24]  V. Bryant Aspects of Combinatorics: A Wide-ranging Introduction , 1993 .

[25]  A. Tietäväinen On the Nonexistence of Perfect Codes over Finite Fields , 1973 .

[26]  Alex J. Grant,et al.  Computation of total capacity for discrete memoryless multiple-access channels , 2004, IEEE Transactions on Information Theory.

[27]  R. McEliece Finite field for scientists and engineers , 1987 .

[28]  Solomon W. Golomb,et al.  Shift Register Sequences , 1981 .

[29]  R. Hartley Transmission of information , 1928 .

[30]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[31]  Branka Vucetic,et al.  Turbo Codes: Principles and Applications , 2000 .

[32]  Richard E. Blahut,et al.  Principles and practice of information theory , 1987 .