When Is a Lagrangian Control System with Virtual Holonomic Constraints Lagrangian?

Abstract This paper investigates a class of Lagrangian control systems with η degrees-of-freedom (DOF) and η — 1 actuators, assuming that η — 1 virtual holonomic constraints have been enforced via feedback, and a basic regularity condition holds. The reduced dynamics of such systems are described by a second-order unforced differential equation. We present necessary and sufficient conditions under which the reduced dynamics are those of a mechanical system with one DOF and, more generally, under which they have a Lagrangian structure.

[1]  Leonid B. Freidovich,et al.  Transverse Linearization for Controlled Mechanical Systems With Several Passive Degrees of Freedom , 2010, IEEE Transactions on Automatic Control.

[2]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[3]  Christine Chevallereau,et al.  Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot , 2009, IEEE Transactions on Robotics.

[4]  G. Darboux Leçons sur la théorie générale des surfaces , 1887 .

[5]  Luca Consolini,et al.  Further Results on Virtual Holonomic Constraints , 2012 .

[6]  Jun Nakanishi,et al.  A brachiating robot controller , 2000, IEEE Trans. Robotics Autom..

[7]  Ruggero Maria Santilli,et al.  Foundations of Theoretical Mechanics I: The Inverse Problem in Newtonian Mechanics , 1978 .

[8]  A. Shiriaev,et al.  Periodic motion planning for virtually constrained Euler-Lagrange systems , 2006, Syst. Control. Lett..

[9]  Olga Krupková,et al.  Second order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations , 2007 .

[10]  R. Johansson,et al.  Periodic motions of the Pendubot via virtual holonomic constraints: Theory and experiments , 2008, Autom..

[11]  Luca Consolini,et al.  Virtual Holonomic Constraints for Euler–Lagrange Systems , 2013, IEEE Transactions on Automatic Control.

[12]  F. Pirani MATHEMATICAL METHODS OF CLASSICAL MECHANICS (Graduate Texts in Mathematics, 60) , 1982 .

[13]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[14]  David Saunders Thirty years of the inverse problem in the calculus of variations , 2010 .

[15]  H. von Helmholtz,et al.  Ueber die physikalische Bedeutung des Prinicips der kleinsten Wirkung. , 1887 .

[16]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[17]  Franck Plestan,et al.  Stable walking of a 7-DOF biped robot , 2003, IEEE Trans. Robotics Autom..

[18]  Carlos Canudas-de-Wit,et al.  Constructive tool for orbital stabilization of underactuated nonlinear systems: virtual constraints approach , 2005, IEEE Transactions on Automatic Control.

[19]  Luca Consolini,et al.  Control of a bicycle using virtual holonomic constraints , 2010, 49th IEEE Conference on Decision and Control (CDC).