An integrated approach for visual analysis of a multisource moving objects knowledge base

We present an integrated and multidisciplinary approach for analyzing the behavior of moving objects. The results originate from an ongoing research of four different partners from the Dutch Poseidon project (Embedded Systems Institute (2007)), which aims to develop new methods for Maritime Safety and Security (MSS) systems to monitor vessel traffic in coastal areas. Our architecture enables an operator to visually test hypotheses about vessels with time-dependent sensor data and on-demand external knowledge. The system includes the following components: abstraction and simulation of trajectory sensor data, fusion of multiple heterogenous data sources, reasoning, and visual analysis of the combined data sources. We start by extracting segments of consistent movement from simulated or real-world trajectory data, which we store as instances of the Simple Event Model (SEM), an event ontology represented in the Resource Description Framework (RDF). Next, we add data from the web about vessels and geography to enrich the sensor data. This additional information is integrated with the representation of the vessels (actors) and places in SEM. The enriched trajectory data are stored in a knowledge base, which can be further annotated by reasoning and is queried by a visual analytics tool to search for spatiotemporal patterns. Although our approach is dedicated to MSS systems, we expect it to be useful in other domains.

[1]  Gennady L. Andrienko,et al.  Designing Visual Analytics Methods for Massive Collections of Movement Data , 2007, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[2]  Daniel A. Keim,et al.  Spatiotemporal Analysis of Sensor Logs using Growth Ring Maps , 2009, IEEE Transactions on Visualization and Computer Graphics.

[3]  Dino Pedreschi,et al.  Interactive visual clustering of large collections of trajectories , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[4]  Chiara Renso,et al.  Developing an Interaction Ontology for characterising pedestrian movement behaviour , 2010 .

[5]  Raphaël Troncy,et al.  LODE: Linking Open Descriptions of Events , 2009, ASWC.

[6]  Michelle X. Zhou,et al.  Interactive Visual Synthesis of Analytic Knowledge , 2006, 2006 IEEE Symposium On Visual Analytics Science And Technology.

[7]  Gerben de Vries,et al.  Combining ship trajectories and semantics with the simple event model (SEM) , 2009, EiMM '09.

[8]  Sean Bechhofer,et al.  SKOS Simple Knowledge Organization System Reference , 2009 .

[9]  E Engelmann,et al.  THE POSEIDON PROJECT , 1990 .

[10]  Pat Hanrahan,et al.  Enhancing Visual Analysis of Network Traffic Using a Knowledge Representation , 2006, 2006 IEEE Symposium On Visual Analytics Science And Technology.

[11]  Jarke J. van Wijk,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2009 Visualization of Vessel Movements , 2022 .

[12]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[13]  Richard A. Becker,et al.  The Visual Design and Control of Trellis Display , 1996 .

[14]  Monica Wachowicz,et al.  Movement-Aware Applications for Sustainable Mobility: Technologies and Approaches , 2010 .

[15]  K. Pearson On the Theory of Contingency and Its Relation to Association and Normal Correlation , 2013 .

[16]  Keith C. Clarke,et al.  Interactive Visual Exploration of a Large Spatio-temporal Dataset: Reflections on a Geovisualization Mashup. , 2007, IEEE Transactions on Visualization and Computer Graphics.

[17]  Alejandra Cechich,et al.  Ontology-driven geographic information integration: A survey of current approaches , 2009, Comput. Geosci..

[18]  Fabio Porto,et al.  A conceptual view on trajectories , 2008, Data Knowl. Eng..

[19]  Chris Brunsdon,et al.  The comap: exploring spatial pattern via conditional distributions , 2001 .

[20]  Eric O. Postma,et al.  Creating artificial vessel trajectories with Presto , 2010 .

[21]  Michela Bertolotto,et al.  Towards a framework for mining and analysing spatio‐temporal datasets , 2007, Int. J. Geogr. Inf. Sci..

[22]  James J. Thomas,et al.  Challenges for Visual Analytics , 2009, Inf. Vis..

[23]  Kathleen Stewart,et al.  Combining ontologies to automatically generate temporal perspectives of geospatial domains , 2010, GeoInformatica.

[24]  Robert Weibel,et al.  Towards a taxonomy of movement patterns , 2008, Inf. Vis..

[25]  Joachim Gudmundsson,et al.  Compressing spatio-temporal trajectories , 2009, Comput. Geom..

[26]  Everett M. Rogers,et al.  Innovation Diffusion As a Spatial Process , 1967 .

[27]  Hui Lin,et al.  An approach for heterogeneous and loosely coupled geospatial data distributed computing , 2010, Comput. Geosci..

[28]  Stefano Spaccapietra,et al.  Trajectory Ontologies and Queries , 2008 .

[29]  俞勇 更多奇景还在NASA World Wind , 2006 .

[30]  Ana M. Sánchez,et al.  A Context Model and Reasoning System to improve object tracking in complex scenarios , 2009, Expert Syst. Appl..

[31]  Pat Hanrahan,et al.  Polaris: A System for Query, Analysis, and Visualization of Multidimensional Relational Databases , 2002, IEEE Trans. Vis. Comput. Graph..

[32]  Ouri Wolfson,et al.  Spatio-temporal data reduction with deterministic error bounds , 2003, DIALM-POMC '03.

[33]  Steffen Staab,et al.  F--a model of events based on the foundational ontology dolce+DnS ultralight , 2009, K-CAP '09.

[34]  Jim X. Chen,et al.  Interactive Linked Micromap Plots And Dynamically Conditioned Choropleth Maps , 2002, DG.O.