APPLICATIONS OF THE ROTATING CALIPERS TO GEOMETRIC PROBLEMS IN TWO AND THREE DIMENSIONS

A paper published in 1983 established that the rotating calipers paradigm provides an elegant, simple, and yet powerful computational tool for solving several twodimensional geometric problems. Since then the rotating calipers have been extended to three dimensions, and have been applied to many new problems. In the present paper the history of this tool is reviewed, and stock is taken of the rich variety of computational problems and applications that have been tackled with it during the past thirty years.

[1]  C. Grima,et al.  Computational Geometry on Surfaces , 2001, Springer Netherlands.

[2]  Godfried T. Toussaint,et al.  A simple O(n log n) algorithm for finding the maximum distance between two finite planar sets , 1982, Pattern Recognit. Lett..

[3]  Ivan Stojmenovic,et al.  Computing shortest transversals of sets , 1992, Int. J. Comput. Geom. Appl..

[4]  Godfried T. Toussaint,et al.  PATTERN RECOGNITION AND GEOMETRICAL COMPLEXITY. , 1980 .

[5]  David E. Muller,et al.  Finding the Intersection of n Half-Spaces in Time O(n log n) , 1979, Theor. Comput. Sci..

[6]  J. Rasson,et al.  Geometrical tools in classification , 1996 .

[7]  Michael E. Houle,et al.  Algorithms for Weak and Wide Separation of Sets , 1993, Discret. Appl. Math..

[8]  Alok Aggarwal,et al.  An Optimal Algorithm for Finding Minimal Enclosing Triangles , 1986, J. Algorithms.

[9]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[10]  Bernard Chazelle,et al.  On the convex layers of a planar set , 1985, IEEE Trans. Inf. Theory.

[11]  Godfried T. Toussaint,et al.  Computational geometry and facility location , 1990 .

[12]  Godfried T. Toussaint,et al.  Complexity, convexity, and unimodality , 1984, International Journal of Computer & Information Sciences.

[13]  Sandip Das,et al.  Smallest k-point enclosing rectangle and square of arbitrary orientation , 2005, Inf. Process. Lett..

[14]  Frans C. A. Groen,et al.  The smallest box around a package , 1981, Pattern Recognit..

[15]  Boris Aronov,et al.  Minimizing the error of linear separators on linearly inseparable data , 2012, Discret. Appl. Math..

[16]  Godfried T. Toussaint,et al.  Computing the Width of a Set , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  David M. Mount,et al.  The Densest Double-Lattice Packing of a Convex Polygon , 1991, Discrete and Computational Geometry.

[18]  Godfried T. Toussaint,et al.  Fast algorithms for computing the diameter of a finite planar set , 2005, The Visual Computer.

[19]  Herbert Freeman,et al.  Determining the minimum-area encasing rectangle for an arbitrary closed curve , 1975, CACM.

[20]  I. Jolliffe Principal Component Analysis , 2002 .

[21]  Yoav Freund,et al.  Large Margin Classification Using the Perceptron Algorithm , 1998, COLT' 98.

[22]  Joseph S. B. Mitchell,et al.  Spiral Serpentine Polygonization of a Planar Point Set , 2011, EGC.

[23]  Godfried T. Toussaint,et al.  On the multimodality of distances in convex polygons , 1982 .

[24]  David Eppstein,et al.  Average case analysis of dynamic geometric optimization , 1994, SODA '94.

[25]  D Baltas,et al.  Optimized bounding boxes for three-dimensional treatment planning in brachytherapy. , 2000, Medical physics.

[26]  Sergios Theodoridis,et al.  A geometric approach to Support Vector Machine (SVM) classification , 2006, IEEE Transactions on Neural Networks.

[27]  Paul L. Rosin,et al.  On the Orientability of Shapes , 2006, IEEE Transactions on Image Processing.

[28]  Joseph O'Rourke,et al.  Finding minimal enclosing boxes , 1985, International Journal of Computer & Information Sciences.

[29]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[30]  Jack Snoeyink,et al.  Counting and Enumerating Pointed Pseudo-triangulations with the Greedy Flip Algorithm , 2006, ALENEX/ANALCO.

[31]  Godfried T. Toussaint,et al.  NEW RESULTS IN COMPUTATIONAL GEOMETRY RELEVANT TO PATTERN RECOGNITION IN PRACTICE , 1986 .

[32]  Theodosios Pavlidis,et al.  Segmentation of Plane Curves , 1974, IEEE Transactions on Computers.

[33]  Gill Barequet,et al.  Optimizing a Strip Separating Two Polygons , 1998, Graph. Model. Image Process..

[34]  Chia-Tche Chang,et al.  Fast oriented bounding box optimization on the rotation group SO(3,ℝ) , 2011, TOGS.

[35]  Godfried T. Toussaint,et al.  Efficient Algorithms for Computing the Maximum Distance Between Two Finite Planar Sets , 1983, J. Algorithms.

[36]  Tristan Needham,et al.  A Visual Explanation of Jensen's Inequality , 1993 .

[37]  J. van Leeuwen,et al.  Discrete and Computational Geometry , 2002, Lecture Notes in Computer Science.

[38]  Paul L. Rosin Measuring shape: ellipticity, rectangularity, and triangularity , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[39]  G. Toussaint Solving geometric problems with the rotating calipers , 1983 .

[40]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[41]  János Pach,et al.  A computational approach to Conway's thrackle conjecture , 2011, Comput. Geom..

[42]  Sariel Har-Peled,et al.  Efficiently approximating the minimum-volume bounding box of a point set in three dimensions , 1999, SODA '99.

[43]  Victor Klee,et al.  Finding the Smallest Triangles Containing a Given Convex Polygon , 1985, J. Algorithms.

[44]  Yoshisuke Kurozumi,et al.  Polygonal approximation by the minimax method , 1982, Comput. Graph. Image Process..

[45]  Rabab Kreidieh Ward,et al.  On Determining the On-Line Minimax Linear Fit to a Discrete Point Set in the Plane , 1987, Inf. Process. Lett..

[46]  Paul L. Rosin,et al.  A new convexity measure for polygons , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Prosenjit Bose,et al.  Some Aperture-Angle Optimization Problems , 2002, Algorithmica.

[48]  Godfried T. Toussaint,et al.  A simple linear algorithm for intersecting convex polygons , 1985, The Visual Computer.

[49]  Ali Shokoufandeh,et al.  Euclidean TSP between two nested convex obstacles , 2005, Inf. Process. Lett..

[50]  Godfried T. Toussaint,et al.  Optimal algorithms for computing the minimum distance between two finite planar sets , 1983, Pattern Recognit. Lett..

[51]  Godfried T. Toussaint,et al.  Quadrangulations of Planar Sets , 1995, WADS.

[52]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[53]  Joseph O'Rourke,et al.  A new linear algorithm for intersecting convex polygons , 1982, Comput. Graph. Image Process..

[54]  János Pach,et al.  Conway's Conjecture for Monotone Thrackles , 2011, Am. Math. Mon..

[55]  J. Urrutia,et al.  Measuring the error of linear separators on linearly inseparable data , 2009 .

[56]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[57]  Jovisa D. Zunic,et al.  Shape elongation from optimal encasing rectangles , 2010, Comput. Math. Appl..

[58]  Godfried T. Toussaint,et al.  Linear Approximation of Simple Objects , 1994, Comput. Geom..

[59]  Henk Meijer,et al.  On the visibility graph of convex translates , 2001, Discret. Appl. Math..

[60]  Paul L. Rosin,et al.  Rectilinearity Measurements for Polygons , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Joseph S. B. Mitchell,et al.  Minimum-perimeter enclosures , 2008, Inf. Process. Lett..

[62]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..