Optimization of Signal to Noise Ratio in Silicon Nanowire ISFET Sensors

Inversion-mode (IM) and depletion-mode (DM) ion-sensitive field effect transistors (ISFETs) are investigated in terms of dc characteristics, pH response and low-frequency noise (LFN) characteristics. The dc characteristics show a low threshold voltage (<inline-formula> <tex-math notation="LaTeX">$\text{V}_{\mathrm{ TH}}$ </tex-math></inline-formula>) of 28 mV for the DM ISFETs, which is preferred for the long lifetime of the pseudo-reference electrode. The DM ISFETs exhibit an enhanced pH response in the sub-threshold region, which comes from the lower sub-threshold swing. The LFN analysis for both devices shows similar level of noise equivalent current (<inline-formula> <tex-math notation="LaTeX">$\text{I}_{\mathrm{ n.RMS}}$ </tex-math></inline-formula>) near <inline-formula> <tex-math notation="LaTeX">$\text{V}_{\mathrm{ TH}}$ </tex-math></inline-formula>; otherwise, a reduction of <inline-formula> <tex-math notation="LaTeX">$\text{I}_{\mathrm{ n.RMS}}$ </tex-math></inline-formula> is obtained in the DM ISFETs in the linear region. In addition, the signal-to-noise ratio of the DM ISFETs is improved by 82.9% compared with the IM ISFETs in the sub-threshold region. Consequently, the DM ISFETs can be a better sensor platform for low-power, portable, and high-precision performance.

[1]  M. Schöning,et al.  Recent advances in biologically sensitive field-effect transistors (BioFETs). , 2002, The Analyst.

[2]  N. F. Rooij,et al.  Fabrication and characterization of a planar electrochemical cell and its application as a glucose sensor , 1989 .

[3]  A. Kranti,et al.  Junctionless nanowire transistor (JNT): Properties and design guidelines , 2010, 2010 Proceedings of the European Solid State Device Research Conference.

[4]  Sungho Kim,et al.  Improved Electrical Characteristics of Honeycomb Nanowire ISFETs , 2013, IEEE Electron Device Letters.

[5]  M. Jamal Deen,et al.  Study of the electrolyte-insulator-semiconductor field-effect transistor (EISFET) with applications in biosensor design , 2007, Microelectron. Reliab..

[6]  Jean-Pierre Colinge,et al.  Semiconductor-On-Insulator Materials for Nanoelectronics Applications , 2011 .

[7]  Sylvain Barraud,et al.  Low-frequency noise behavior of junctionless transistors compared to inversion-mode transistors , 2013 .

[8]  C. Toumazou,et al.  Weak Inversion ISFETs for ultra-low power biochemical sensing and real-time analysis , 2005 .

[9]  M. Koudelka Performance Characteristics of a Planar Clark-Type Oxygen Sensor , 1986 .

[10]  N. F. Starodub,et al.  Enzymatic Biosensor Based on the ISFET and Photopolymeric Membrane for the Determinaion of Urea , 2004 .

[11]  E. Kaler,et al.  Effects of pH on protein-protein interactions and implications for protein phase behavior. , 2008, Biochimica et biophysica acta.

[12]  Nitin K. Rajan,et al.  Optimal signal-to-noise ratio for silicon nanowire biochemical sensors. , 2011, Applied physics letters.

[13]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[14]  V Chu,et al.  Detection of DNA and proteins using amorphous silicon ion-sensitive thin-film field effect transistors. , 2008, Biosensors & bioelectronics.

[15]  M. Meyyappan,et al.  Optimized operation of silicon nanowire field effect transistor sensors , 2014, Nanotechnology.

[16]  Adrian M. Ionescu,et al.  Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor , 2013 .

[17]  M. Meyyappan,et al.  Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. , 2016, Biosensors & bioelectronics.

[18]  T. Ning,et al.  Optimization of pH sensing using silicon nanowire field effect transistors with HfO2 as the sensing surface , 2011, Nanotechnology.

[19]  A. J. Sprenkels,et al.  A theoretical analysis of the electret air-gap field-effect structure for sensor applications , 1986 .

[20]  Bhusana Premanode,et al.  A novel, low power biosensor for real time monitoring of creatinine and urea in peritoneal dialysis , 2006 .

[21]  M. Meyyappan,et al.  Investigation of the electrical stability of Si-nanowire biologically sensitive field-effect transistors with embedded Ag/AgCl pseudo reference electrode , 2013 .

[22]  Albert van den Berg,et al.  Al2O3/silicon nanoISFET with near ideal nernstian response. , 2011, Nano letters.

[23]  Y. Arata,et al.  Spectroscopic Characterization and the pH Dependence of Bactericidal Activity of the Aqueous Chlorine Solution , 1998 .

[24]  M. Meyyappan,et al.  Vertical gate-all-around junctionless nanowire transistors with asymmetric diameters and underlap lengths , 2014 .

[25]  M. Deen,et al.  Electrochemical growth of high-aspect ratio nanostructured silver chloride on silver and its application to miniaturized reference electrodes , 2011, Nanotechnology.

[26]  Piet Bergveld,et al.  Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years , 2003 .

[27]  C. Schönenberger,et al.  Nernst limit in dual-gated Si-nanowire FET sensors. , 2010, Nano letters.

[28]  K R Rogers,et al.  Recent advances in biosensor techniques for environmental monitoring. , 2006, Analytica chimica acta.

[29]  Jean-Pierre Colinge,et al.  Low-frequency noise in junctionless multigate transistors , 2011 .

[30]  M. Meyyappan,et al.  Suspended honeycomb nanowire ISFETs for improved stiction-free performance , 2014, Nanotechnology.

[31]  G. Palleschi,et al.  Enzyme inhibition-based biosensors for food safety and environmental monitoring. , 2006, Biosensors & bioelectronics.