Thermodynamic Explanation of Landau Damping by Reduction to Hydrodynamics

Landau damping is the tendency of solutions to the Vlasov equation towards spatially homogeneous distribution functions. The distribution functions, however, approach the spatially homogeneous manifold only weakly, and Boltzmann entropy is not changed by the Vlasov equation. On the other hand, density and kinetic energy density, which are integrals of the distribution function, approach spatially homogeneous states strongly, which is accompanied by growth of the hydrodynamic entropy. Such a behavior can be seen when the Vlasov equation is reduced to the evolution equations for density and kinetic energy density by means of the Ehrenfest reduction.

[1]  C. Villani Particle systems and nonlinear Landau dampinga) , 2014 .

[2]  Miroslav Grmela,et al.  Hamiltonian and Godunov structures of the Grad hierarchy. , 2016, Physical review. E.

[3]  Alexander N. Gorban,et al.  Irreversibility in the short memory approximation , 2003 .

[4]  O. Esen,et al.  Geometry ofplasma dynamics II: Lie algebra of Hamiltonian vector fields , 2012 .

[5]  M. Grmela,et al.  A hierarchy of Poisson brackets in non-equilibrium thermodynamics , 2015, 1512.08010.

[6]  H. Callen,et al.  Thermodynamics : an introduction to the physical theories of equilibrium thermostatics and irreversible thermodynamics. , 1966 .

[7]  C. Villani PARTICLE SYSTEMS AND NONLINEAR LANDAU DAMPING , 2013 .

[8]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[9]  Miroslav Grmela,et al.  Reductions and extensions in mesoscopic dynamics. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  P. Morrison,et al.  Hamiltonian closures for fluid models with four moments by dimensional analysis , 2015, 1502.04639.

[11]  M. Grmela,et al.  Landau damping in the multiscale Vlasov theory , 2017, 1703.04577.

[12]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[13]  J. Marsden,et al.  Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids , 1983 .

[14]  Lev Davidovich Landau,et al.  On the vibrations of the electronic plasma , 1946 .

[15]  Miroslav Grmela,et al.  Time reversal in nonequilibrium thermodynamics. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  P. Mazur,et al.  Hydrodynamics for an ideal fluid: Hamiltonian formalism and Liouville-equation , 1981 .

[17]  Y. Levin,et al.  Nonequilibrium statistical mechanics of systems with long-range interactions , 2013, 1310.1078.

[18]  I. Oppenheim Beyond Equilibrium Thermodynamics , 2006 .

[19]  P. Gibbon,et al.  Introduction to Plasma Physics , 2017, 2007.04783.

[20]  K. Kormann,et al.  GEMPIC: geometric electromagnetic particle-in-cell methods , 2016, Journal of Plasma Physics.

[21]  Ernst Hairer,et al.  Simulating Hamiltonian dynamics , 2006, Math. Comput..

[22]  James Jeans,et al.  The stability of a spherical Nebula , 1901, Proceedings of the Royal Society of London.

[23]  P. Morrison,et al.  Noncanonical Hamiltonian Density Formulation of Hydrodynamics and Ideal Magnetohydrodynamics. , 1980 .

[24]  P. Morrison,et al.  Higher order Hamiltonian fluid reduction of Vlasov equation , 2014, 1403.2614.

[25]  Y. Levin,et al.  Entropy production in systems with long range interactions , 2017, 1707.00761.

[26]  Alexander N Gorban,et al.  Ehrenfest's argument extended to a formalism of nonequilibrium thermodynamics. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Jerrold E. Marsden,et al.  The Hamiltonian structure of the Maxwell-Vlasov equations , 1982 .

[28]  E. Jaynes Foundations of Probability Theory and Statistical Mechanics , 1967 .

[29]  Cl'ement Mouhot,et al.  On Landau damping , 2009, 0904.2760.

[30]  H. Grad Principles of the Kinetic Theory of Gases , 1958 .

[31]  Swen Kortig,et al.  Differential Geometry And Lie Groups For Physicists , 2016 .