High-resolution structure of the Escherichia coli ribosome

Protein synthesis by the ribosome is highly dependent on the ionic conditions in the cellular environment, but the roles of ribosome solvation have remained poorly understood. Moreover, the functions of modifications to ribosomal RNA and ribosomal proteins have also been unclear. Here we present the structure of the Escherichia coli 70S ribosome at 2.4-Å resolution. The structure reveals details of the ribosomal subunit interface that are conserved in all domains of life, and it suggests how solvation contributes to ribosome integrity and function as well as how the conformation of ribosomal protein uS12 aids in mRNA decoding. This structure helps to explain the phylogenetic conservation of key elements of the ribosome, including post-transcriptional and post-translational modifications, and should serve as a basis for future antibiotic development.

[1]  玉一 芦田,et al.  Acta Crystallographica Section D (Biological Crystallography) の発刊に際して , 1993 .

[2]  P. Agris,et al.  The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. , 1996, Progress in nucleic acid research and molecular biology.

[3]  Jiangning Song,et al.  Prediction of cis/trans isomerization in proteins using PSI-BLAST profiles and secondary structure information , 2006, BMC Bioinformatics.

[4]  Jef Rozenski,et al.  The RNA Modification Database: 1999 update , 1999, Nucleic Acids Res..

[5]  K. Rudd,et al.  Identification and characterization of RsmE, the founding member of a new RNA base methyltransferase family. , 2006, RNA.

[6]  R. Beckmann,et al.  Molecular basis for the ribosome functioning as an L-tryptophan sensor. , 2014, Cell reports.

[7]  K. Shokat,et al.  Corrigendum: The p110[delta] structure: mechanisms for selectivity and potency of new PI(3)K inhibitors , 2010 .

[8]  H. Noller,et al.  How the ribosome hands the A-site tRNA to the P site during EF-G–catalyzed translocation , 2014, Science.

[9]  P. Ratcliffe,et al.  Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy , 2014, Proceedings of the National Academy of Sciences.

[10]  D. Raleigh,et al.  Energetically significant networks of coupled interactions within an unfolded protein , 2014, Proceedings of the National Academy of Sciences.

[11]  S. T. Gregory,et al.  Inactivation of the RluD Pseudouridine Synthase Has Minimal Effects on Growth and Ribosome Function in Wild-Type Escherichia coli and Salmonella enterica , 2010, Journal of bacteriology.

[12]  R. Guérois,et al.  A Compact Viral Processing Proteinase/Ubiquitin Hydrolase from the OTU Family , 2013, PLoS pathogens.

[13]  M. Rodnina,et al.  Optimization of speed and accuracy of decoding in translation , 2010, The EMBO journal.

[14]  J. McCloskey,et al.  Conformational flexibility in RNA: the role of dihydrouridine. , 1996, Nucleic acids research.

[15]  Brian P. Anton,et al.  RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli , 2008, Proceedings of the National Academy of Sciences.

[16]  J. Cate,et al.  Synergy of Streptogramin Antibiotics Occurs Independently of Their Effects on Translation , 2014, Antimicrobial Agents and Chemotherapy.

[17]  C. Kurland,et al.  Nucleoside triphosphate regeneration decreases the frequency of translation errors. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[18]  S. K. Mahto,et al.  Expanding the nucleotide repertoire of the ribosome with post-transcriptional modifications. , 2007, ACS chemical biology.

[19]  Vincent B. Chen,et al.  Structures of the Bacterial Ribosome in Classical and Hybrid States of tRNA Binding , 2011, Science.

[20]  Paul D. Adams,et al.  FEM: feature-enhanced map , 2014, Acta crystallographica. Section D, Biological crystallography.

[21]  James B. Munro,et al.  Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. , 2009, Biophysical journal.

[22]  Shashi Bhushan,et al.  SecM-Stalled Ribosomes Adopt an Altered Geometry at the Peptidyl Transferase Center , 2011, PLoS biology.

[23]  P. Main,et al.  The use of Sayre's equation with solvent flattening and histogram matching for phase extension and refinement of protein structures , 1990 .

[24]  J. McCutcheon,et al.  A Detailed View of a Ribosomal Active Site The Structure of the L11–RNA Complex , 1999, Cell.

[25]  David E Draper,et al.  A guide to ions and RNA structure. , 2004, RNA.

[26]  Colin Echeverría Aitken,et al.  An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. , 2008, Biophysical journal.

[27]  M. Sekine,et al.  Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2'-hydroxyl group. , 1992, Biochemistry.

[28]  Steven Chu,et al.  tRNA dynamics on the ribosome during translation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Daniel N. Wilson,et al.  Mechanisms of SecM-mediated stalling in the ribosome. , 2012, Biophysical journal.

[30]  Feng Qin,et al.  Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. , 2004, Biophysical journal.

[31]  Rachelle S. Singleton,et al.  OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation , 2014, Proceedings of the National Academy of Sciences.

[32]  Steven Chu,et al.  Fluctuations of transfer RNAs between classical and hybrid states. , 2007, Biophysical journal.

[33]  M. Roberts Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics , 2004, Molecular biotechnology.

[34]  N. Costantino,et al.  A Proteomic and Transcriptomic Approach Reveals New Insight into β-methylthiolation of Escherichia coli Ribosomal Protein S12* , 2010, Molecular & Cellular Proteomics.

[35]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[36]  T. Steitz,et al.  Amicoumacin a inhibits translation by stabilizing mRNA interaction with the ribosome. , 2014, Molecular cell.

[37]  T. Steitz,et al.  Revisiting the structures of several antibiotics bound to the bacterial ribosome , 2010, Proceedings of the National Academy of Sciences.

[38]  Sergey Melnikov,et al.  The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution , 2011, Science.

[39]  J. Puglisi,et al.  tRNA selection and kinetic proofreading in translation , 2004, Nature Structural &Molecular Biology.

[40]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[41]  P. Bevilacqua,et al.  Prevalence of syn nucleobases in the active sites of functional RNAs. , 2011, RNA.

[42]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[43]  Klaus Schulten,et al.  Macrolide antibiotics allosterically predispose the ribosome for translation arrest , 2014, Proceedings of the National Academy of Sciences.

[44]  J. Ofengand,et al.  The pseudouridine synthase RluD is required for normal ribosome assembly and function in Escherichia coli. , 2005, RNA.

[45]  James B. Munro,et al.  Correlated conformational events in EF-G and the ribosome regulate translocation , 2010, Nature Structural &Molecular Biology.

[46]  M. Sørensen,et al.  Pseudouridylation of helix 69 of 23S rRNA is necessary for an effective translation termination , 2007, Proceedings of the National Academy of Sciences.

[47]  Sergey V. Melnikov,et al.  The structure of the eukaryotic ribosome at 3.0 angstrom resolution. , 2011 .

[48]  J. Holton,et al.  Structures of the Bacterial Ribosome at 3.5 Å Resolution , 2005, Science.

[49]  Nathan O'Connor,et al.  Identification of two distinct hybrid state intermediates on the ribosome. , 2007, Molecular cell.

[50]  Michael B. Feldman,et al.  Aminoglycoside activity observed on single pre-translocation ribosome complexes. , 2010, Nature chemical biology.

[51]  J. Cate,et al.  Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action , 2010, Proceedings of the National Academy of Sciences.

[52]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[53]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[54]  P. Sergiev,et al.  Posttranslational Modifications of Ribosomal Proteins in Escherichia coli , 2011, Acta naturae.

[55]  Michael B. Feldman,et al.  Allosteric control of the ribosome by small-molecule antibiotics , 2012, Nature Structural &Molecular Biology.

[56]  Thomas A Steitz,et al.  Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. , 2005, Molecular cell.

[57]  Daniel N. Wilson,et al.  Structural basis for the interaction of protein S1 with the Escherichia coli ribosome , 2014, Nucleic acids research.

[58]  K. Kannan,et al.  Selective Protein Synthesis by Ribosomes with a Drug-Obstructed Exit Tunnel , 2012, Cell.

[59]  angesichts der Corona-Pandemie,et al.  UPDATE , 1973, The Lancet.

[60]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[61]  S. Douthwaite,et al.  YgdE is the 2′‐O‐ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA , 2009, Molecular microbiology.

[62]  M. Yusupov,et al.  Structural aspects of messenger RNA reading frame maintenance by the ribosome , 2010, Nature Structural &Molecular Biology.

[63]  P. Andrew Karplus,et al.  Ordered water in macromolecular structure , 1994 .

[64]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[65]  M. Wolf-Watz,et al.  Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state. , 2008, Journal of molecular biology.

[66]  D. Sayre Least‐squares phase refinement. II. High‐resolution phasing of a small protein , 1974 .

[67]  D. Tollervey,et al.  Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly , 1993, Cell.

[68]  James A. McCloskey,et al.  The Rna Modification Database , 1999 .

[69]  I. D. Algranati,et al.  Effect of polyamines on translation fidelity in vivo. , 1986, European journal of biochemistry.

[70]  M. Garber,et al.  Revisiting the Haloarcula marismortui 50S ribosomal subunit model. , 2013, Acta crystallographica. Section D, Biological crystallography.

[71]  Henning Urlaub,et al.  Structural and functional analysis of the E. coli NusB-S10 transcription antitermination complex. , 2009, Molecular cell.

[72]  V. de Crécy-Lagard,et al.  Predicting the Minimal Translation Apparatus: Lessons from the Reductive Evolution of Mollicutes , 2014, PLoS genetics.

[73]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[74]  J. Cate,et al.  Structures of the Ribosome in Intermediate States of Ratcheting , 2009, Science.

[75]  M. Sachs,et al.  Crucial elements that maintain the interactions between the regulatory TnaC peptide and the ribosome exit tunnel responsible for Trp inhibition of ribosome function , 2011, Nucleic acids research.

[76]  Daniel N. Wilson,et al.  Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. , 2010, Molecular cell.

[77]  P. Moore How should we think about the ribosome? , 2012, Annual review of biophysics.

[78]  T. Steitz,et al.  A proton wire to couple aminoacyl-tRNA accommodation and peptide bond formation on the ribosome , 2014, Nature Structural &Molecular Biology.

[79]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[80]  S. Kim,et al.  Solvent-accessible surfaces of nucleic acids. , 1979, Journal of molecular biology.

[81]  P. Ratcliffe,et al.  Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth , 2014, Proceedings of the National Academy of Sciences.

[82]  C. Robinson,et al.  Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. , 2012, Nature chemical biology.

[83]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[84]  B. Porse,et al.  A novel partial modification at C2501 in Escherichia coli 23S ribosomal RNA. , 2004, RNA.