UNITARITY IN ONE DIMENSIONAL NONLINEAR QUANTUM CELLULAR AUTOMATA

Unitarity of the global evolution is an extremely stringent condition on finite state models in discrete spacetime. Quantum cellular automata, in particular, are tightly constrained. In previous work we proved a simple No-go Theorem which precludes nontrivial homogeneous evolution for linear quantum cellular automata. Here we carefully define general quantum cellular automata in order to investigate the possibility that there be nontrivial homogeneous unitary evolution when the local rule is nonlinear. Since the unitary global transition amplitudes are constructed from the product of local transition amplitudes, infinite lattices require different treatment than periodic ones. We prove Unitarity Theorems for both cases, expressing the equivalence in 1+1 dimensions of global unitarity and certain sets of constraints on the local rule, and then show that these constraints can be solved to give a variety of multiparameter families of nonlinear quantum cellular automata. The Unitarity Theorems, together with a Surjectivity Theorem for the infinite case, also imply that unitarity is decidable for one dimensional cellular automata.

[1]  Serafino Amoroso,et al.  Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 1972, J. Comput. Syst. Sci..

[2]  Teich,et al.  Stochastic dynamics of individual quantum systems: Stationary rate equations. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[3]  M. W. Shields An Introduction to Automata Theory , 1988 .

[4]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[5]  John Watrous,et al.  On one-dimensional quantum cellular automata , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[6]  H. S. Allen The Quantum Theory , 1928, Nature.

[7]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[8]  Gary D. Doolen Lattice Gas Methods For Partial Differential Equations , 1990 .

[9]  R. Blahut Theory and practice of error control codes , 1983 .

[10]  Miklos Santha,et al.  A decision procedure for well-formed linear quantum cellular automata , 1997 .

[11]  David Hillman The structure of reversible one-dimensional cellular automata , 1991 .

[12]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[13]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[14]  Wentian Li,et al.  Transition phenomena in cellular automata rule space , 1991 .

[15]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[16]  P. Dirac Principles of Quantum Mechanics , 1982 .

[17]  Arthur W. Burks,et al.  VON NEUMANN'S SELF-REPRODUCING AUTOMATA , 1969 .

[18]  David A. Meyer,et al.  ON THE ABSENCE OF HOMOGENEOUS SCALAR QUANTUM CELLULAR AUTOMATA , 1996 .

[19]  Serafino Amoroso,et al.  A Completeness Problem for Pattern Generation in Tessellation Automata , 1970, J. Comput. Syst. Sci..

[20]  Klaus Sutner,et al.  Computation theory of cellular automata , 1998 .

[21]  N. Margolus,et al.  Invertible cellular automata: a review , 1991 .

[22]  K. Morita,et al.  Computation universality of one-dimensional reversible (injective) cellular automata , 1989 .

[23]  Rafael D. Sorkin Role of time in the sum-over-histories framework for gravity , 1994 .

[24]  P. Halmos A Hilbert Space Problem Book , 1967 .

[25]  Schwabl,et al.  Nonlocal computation in quantum cellular automata. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[26]  N. Margolus Physics-like models of computation☆ , 1984 .

[27]  E. F. Moore Machine Models of Self-Reproduction , 1962 .

[28]  George H. Mealy,et al.  A method for synthesizing sequential circuits , 1955 .

[29]  I. Good Normal Recurring Decimals , 1946 .

[30]  Brosl Hasslacher Parallel billiards and monster systems , 1993 .

[31]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  H. Weyl The Theory Of Groups And Quantum Mechanics , 1931 .

[33]  James B. Hartle The Quantum Mechanics of Closed Systems , 1992 .

[34]  Jarkko Kari,et al.  Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..

[35]  D. Meyer On the absence of homogeneous scalar unitary cellular automata , 1996, quant-ph/9604011.

[36]  R. Feynman Simulating physics with computers , 1999 .

[37]  Bombelli,et al.  Space-time as a causal set. , 1987, Physical review letters.

[38]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[39]  Gerhard Grössing,et al.  Quantum Cellular Automata , 1988, Complex Syst..

[40]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[41]  R. Feynman Quantum mechanical computers , 1986 .

[42]  Kenichi Morita,et al.  Computation-Universality of One-Dimensional One-Way Reversible Cellular Automata , 1992, Inf. Process. Lett..

[43]  R. Sorkin,et al.  Spacetime as a Causal Set , 1989 .

[44]  J. Myhill The converse of Moore’s Garden-of-Eden theorem , 1963 .

[45]  Barenco,et al.  Conditional Quantum Dynamics and Logic Gates. , 1995, Physical review letters.