UNITARITY IN ONE DIMENSIONAL NONLINEAR QUANTUM CELLULAR AUTOMATA
暂无分享,去创建一个
[1] Serafino Amoroso,et al. Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 1972, J. Comput. Syst. Sci..
[2] Teich,et al. Stochastic dynamics of individual quantum systems: Stationary rate equations. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[3] M. W. Shields. An Introduction to Automata Theory , 1988 .
[4] D. Meyer. From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.
[5] John Watrous,et al. On one-dimensional quantum cellular automata , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.
[6] H. S. Allen. The Quantum Theory , 1928, Nature.
[7] J. Cirac,et al. Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.
[8] Gary D. Doolen. Lattice Gas Methods For Partial Differential Equations , 1990 .
[9] R. Blahut. Theory and practice of error control codes , 1983 .
[10] Miklos Santha,et al. A decision procedure for well-formed linear quantum cellular automata , 1997 .
[11] David Hillman. The structure of reversible one-dimensional cellular automata , 1991 .
[12] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[13] P. D. Tougaw,et al. Logical devices implemented using quantum cellular automata , 1994 .
[14] Wentian Li,et al. Transition phenomena in cellular automata rule space , 1991 .
[15] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[16] P. Dirac. Principles of Quantum Mechanics , 1982 .
[17] Arthur W. Burks,et al. VON NEUMANN'S SELF-REPRODUCING AUTOMATA , 1969 .
[18] David A. Meyer,et al. ON THE ABSENCE OF HOMOGENEOUS SCALAR QUANTUM CELLULAR AUTOMATA , 1996 .
[19] Serafino Amoroso,et al. A Completeness Problem for Pattern Generation in Tessellation Automata , 1970, J. Comput. Syst. Sci..
[20] Klaus Sutner,et al. Computation theory of cellular automata , 1998 .
[21] N. Margolus,et al. Invertible cellular automata: a review , 1991 .
[22] K. Morita,et al. Computation universality of one-dimensional reversible (injective) cellular automata , 1989 .
[23] Rafael D. Sorkin. Role of time in the sum-over-histories framework for gravity , 1994 .
[24] P. Halmos. A Hilbert Space Problem Book , 1967 .
[25] Schwabl,et al. Nonlocal computation in quantum cellular automata. , 1993, Physical review. A, Atomic, molecular, and optical physics.
[26] N. Margolus. Physics-like models of computation☆ , 1984 .
[27] E. F. Moore. Machine Models of Self-Reproduction , 1962 .
[28] George H. Mealy,et al. A method for synthesizing sequential circuits , 1955 .
[29] I. Good. Normal Recurring Decimals , 1946 .
[30] Brosl Hasslacher. Parallel billiards and monster systems , 1993 .
[31] D. Deutsch. Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[32] H. Weyl. The Theory Of Groups And Quantum Mechanics , 1931 .
[33] James B. Hartle. The Quantum Mechanics of Closed Systems , 1992 .
[34] Jarkko Kari,et al. Reversibility and Surjectivity Problems of Cellular Automata , 1994, J. Comput. Syst. Sci..
[35] D. Meyer. On the absence of homogeneous scalar unitary cellular automata , 1996, quant-ph/9604011.
[36] R. Feynman. Simulating physics with computers , 1999 .
[37] Bombelli,et al. Space-time as a causal set. , 1987, Physical review letters.
[38] Umesh V. Vazirani,et al. Quantum Complexity Theory , 1997, SIAM J. Comput..
[39] Gerhard Grössing,et al. Quantum Cellular Automata , 1988, Complex Syst..
[40] de Ng Dick Bruijn. A combinatorial problem , 1946 .
[41] R. Feynman. Quantum mechanical computers , 1986 .
[42] Kenichi Morita,et al. Computation-Universality of One-Dimensional One-Way Reversible Cellular Automata , 1992, Inf. Process. Lett..
[43] R. Sorkin,et al. Spacetime as a Causal Set , 1989 .
[44] J. Myhill. The converse of Moore’s Garden-of-Eden theorem , 1963 .
[45] Barenco,et al. Conditional Quantum Dynamics and Logic Gates. , 1995, Physical review letters.