An atomistic-based interphase zone model for crystalline solids
暂无分享,去创建一个
Shaofan Li | Akhilesh K. Jha | Bo Ren | Shaofan Li | A. Jha | B. Ren | Xiaowei Zeng | Jing Qian | Xiaowei Zeng | J. Qian | Jinshu Zhang | Jinshu Zhang
[1] Shaofan Li,et al. Application of Multiscale Cohesive Zone Model to Simulate Fracture in Polycrystalline Solids , 2011 .
[2] D. S. Dugdale. Yielding of steel sheets containing slits , 1960 .
[3] M. Baskes,et al. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .
[4] Shaofan Li,et al. A cohesive finite element for quasi-continua , 2008 .
[5] O. T. Nguyen,et al. Coarse-graining and renormalization of atomistic binding relations and universal macroscopic cohesive behavior , 2002 .
[6] James R. Rice,et al. Dislocation Nucleation from a Crack Tip" an Analysis Based on the Peierls Concept , 1991 .
[7] Gregory J. Tallents,et al. Temporal resolution of a transient pumping X-ray laser , 2001 .
[8] David A. Weitz,et al. Visualizing dislocation nucleation by indenting colloidal crystals , 2006, Nature.
[9] Efthimios Kaxiras,et al. From Electrons to Finite Elements: A Concurrent Multiscale Approach for Metals , 2005, cond-mat/0506006.
[10] R. Peierls. The size of a dislocation , 1940 .
[11] Mark F. Horstemeyer,et al. A multiscale analysis of fixed-end simple shear using molecular dynamics, crystal plasticity, and a macroscopic internal state variable theory , 2003 .
[12] S. Suresh. Colloid model for atoms , 2006, Nature materials.
[13] Huajian Gao,et al. Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds , 1998 .
[14] Youping Chen,et al. Atomistic formulation of a multiscale field theory for nano/micro solids , 2005 .
[15] Xiaopeng Xu,et al. Numerical simulations of fast crack growth in brittle solids , 1994 .
[16] Frank Reginald Nunes Nabarro,et al. Mathematical theory of stationary dislocations , 1952 .
[17] Wing Kam Liu,et al. Nonlinear Finite Elements for Continua and Structures , 2000 .
[18] P. Serena,et al. A comparison between EAM interatomic potentials for Al and Ni: from bulk systems to nanowires , 2006 .
[19] R. Hill. On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[20] M. Ortiz,et al. Effective Cohesive Behavior of Layers of Interatomic Planes , 2006 .
[21] Shaofan Li,et al. Perfectly matched multiscale simulations for discrete lattice systems: Extension to multiple dimensions , 2006 .
[22] D. Malkus,et al. Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .
[23] Huajian Gao,et al. Hyperelasticity governs dynamic fracture at a critical length scale , 2003, Nature.
[24] Gregory J. Wagner,et al. Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .
[25] L. J. Sluys,et al. A new method for modelling cohesive cracks using finite elements , 2001 .
[26] T. Belytschko,et al. Extended finite element method for cohesive crack growth , 2002 .
[27] J. M. Kennedy,et al. Hourglass control in linear and nonlinear problems , 1983 .
[28] Harold S. Park,et al. The bridging scale for two-dimensional atomistic/continuum coupling , 2005 .
[29] Rong Tian,et al. A multiresolution continuum simulation of the ductile fracture process , 2010 .
[30] John R. Rice,et al. The activation energy for dislocation nucleation at a crack , 1994 .
[31] M. Ortiz,et al. FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .
[32] Shaofan Li,et al. Introduction To Micromechanics And Nanomechanics , 2008 .
[33] A. Curnier,et al. A finite element method for a class of contact-impact problems , 1976 .
[34] Shaofan Li,et al. An embedded atom hyperelastic constitutive model and multiscale cohesive finite element method , 2012 .
[35] J. Clayton. Modeling Dynamic Plasticity and Spall Fracture in High Density Polycrystalline Alloys , 2005 .
[36] John R. Rice,et al. A Critical Evaluation of Cohesive Zone Models of Dynamic Fracture , 2001 .
[37] James D. Lee,et al. Multiscale modeling of dynamic crack propagation , 2010 .
[38] Shaofan Li,et al. A multiscale cohesive zone model and simulations of fractures , 2010 .
[39] Roger A. Sauer,et al. A contact mechanics model for quasi‐continua , 2007 .
[40] James R. Rice,et al. Ductile versus brittle behaviour of crystals , 1974 .
[41] Glaucio H. Paulino,et al. A unified potential-based cohesive model of mixed-mode fracture , 2009 .
[42] Youping Chen,et al. Multiscale material modeling and its application to a dynamic crack propagation problem , 2009 .
[43] Weixuan Yang,et al. A temperature‐related homogenization technique and its implementation in the meshfree particle method for nanoscale simulations , 2007 .
[44] J. Rice,et al. Crack front waves , 1998 .
[45] G. I. Barenblatt. THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .