Using evolutionary and hybrid algorithms for DC operating point analysis of nonlinear circuits

Traditionally, the DC operating points of a nonlinear electronic circuit are found using the Newton-Raphson method, which has known problems. It is not globally convergent; it can frequently diverge; and cannot find multiple solutions in a single pass. We discuss the use of evolutionary algorithms to overcome these problems.

[1]  Seth R. Sanders,et al.  Multi-parameter homotopy methods for finding DC operating points of nonlinear circuits , 1993, ISCAS.

[2]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[3]  Donald Albert Calahan,et al.  Computer Aided Network Design , 1972 .

[4]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[5]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[6]  Rainer Storn,et al.  Minimizing the real functions of the ICEC'96 contest by differential evolution , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[7]  Ljiljana Trajkovic,et al.  Artificial parameter homotopy methods for the DC operating point problem , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[8]  Mark Zwolinski,et al.  VLSI Circuit Simulation and Optimization , 1996 .

[9]  Ping Yang,et al.  Direct circuit simulation algorithms for parallel processing [VLSI] , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[10]  Albert E. Ruehli,et al.  The modified nodal approach to network analysis , 1975 .

[11]  Juan J. Obregon,et al.  Newton-Raphson iteration speed-up algorithm for the solution of nonlinear circuit equations in general-purpose CAD programs , 1997, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[12]  Albert E. Ruehli,et al.  An algorithm for dc solutions in an experimental general purpose interactive circuit design program , 1977 .

[13]  Ljiljana Trajkovic Homotopy Methods for Computing Dc Operating Points , 1999 .

[14]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.