The distribution of gaps between summands in generalized Zeckendorf decompositions

Zeckendorf proved any integer can be decomposed uniquely as a sum of non-adjacent Fibonacci numbers, F n . Using continued fractions, Lekkerkerker proved the average number of summands of an m ? F n , F n + 1 ) is essentially n / ( ? 2 + 1 ) , with ? the golden ratio. This result has been generalized by many, often using Markov processes, to show that for any positive linear recurrence the number of summands in decompositions for integers in G n , G n + 1 ) converges to a Gaussian distribution. Below we instead follow and further develop the combinatorial approach of Miller and Wang, and show its power in handling related questions. Specifically, we prove that the probability of a gap larger than the recurrence length converges to decaying geometrically, and that the distribution of the smaller gaps depends in a computable way on the coefficients of the recurrence. These results hold both for the average over all m ? G n , G n + 1 ) and almost surely for the gap measure associated to individual m. These techniques also determine the distribution of the longest gap between summands, which we prove is similar to the distribution of the longest gap between heads in tosses of a biased coin. It is a double exponential strongly concentrated about the mean, and is on the order of log ? n with computable constants depending on the recurrence.

[1]  Steven J. Miller,et al.  From Fibonacci numbers to central limit type theorems , 2010, J. Comb. Theory A.

[2]  S. Goldberg,et al.  Introduction to Difference Equations , 1958 .

[3]  Steven J. Miller,et al.  Gaussian Behavior in Generalized Zeckendorf Decompositions , 2014 .

[4]  Michael Drmota,et al.  The distribution of the sum-of-digits function , 1998 .

[5]  Robert F. Tichy,et al.  Contributions to digit expansions with respect to linear recurrences , 1990 .

[6]  D. E. Daykin Representation of Natural Numbers as Sums of Generalised Fibonacci Numbers , 1960 .

[7]  Grabner,et al.  The distribution of the sum-of-digits function , 1998 .

[8]  Alain Thomas,et al.  Systems of numeration and fractal functions relating to substitutions (French) , 1989 .

[9]  P. Erdös,et al.  The Gaussian Law of Errors in the Theory of Additive Number Theoretic Functions , 1940 .

[10]  Steven J. Miller,et al.  On the number of summands in Zeckendorf decompositions , 2010, 1008.3204.

[11]  Steven J. Miller,et al.  A Generalization of Fibonacci Far-Difference Representations and Gaussian Behavior , 2013, The Fibonacci Quarterly.

[12]  Steven J. Miller,et al.  Gaussian Distribution of the Number of Summands in Generalized Zeckendorf Decompositions in Small Intervals , 2015, Integers.

[13]  Steven J. Miller,et al.  A Probabilistic Approach to Generalized Zeckendorf Decompositions , 2014, SIAM J. Discret. Math..

[14]  C. G. Lekkerkerker,et al.  Voorstelling van natuurlijke getallen door een som van getallen van fibonacci , 1951 .

[15]  Robert F. Tichy,et al.  Corrigendum to “generalized Zeckendorf expansions” , 1994 .

[16]  Wolfgang Steiner Parry expansions of polynomial sequences. , 2002 .

[17]  Steven J. Miller,et al.  Gaussian Behavior of the Number of Summands in Zeckendorf Decompositions in Small Intervals , 2014, The Fibonacci Quarterly.

[18]  Bert Fristedt,et al.  A modern approach to probability theory , 1996 .

[19]  Steven J. Miller,et al.  Generalizing Zeckendorf’s Theorem: The Kentucky Sequence , 2014, The Fibonacci Quarterly.

[20]  Jean-Marie Dumont,et al.  Systemes de Numeration et Fonctions Fractales Relatifs aux Substitutions , 1989, Theor. Comput. Sci..

[21]  Steven J. Miller,et al.  The Average Gap Distribution for Generalized Zeckendorf Decompositions , 2012, The Fibonacci Quarterly.

[22]  Edward B. Burger,et al.  A generalization of a theorem of Lekkerkerker to Ostrowski's decomposition of natural numbers , 2012 .

[23]  Mark Schilling,et al.  The Longest Run of Heads , 1990 .

[24]  Steven J. Miller,et al.  Generalizing Zeckendorf's Theorem to f-decompositions , 2013, 1309.5599.

[25]  Mario Lamberger,et al.  Distribution properties of digital expansions arising from linear recurrences , 2003 .

[26]  Hannah Alpert,et al.  Differences of Multiple Fibonacci Numbers , 2009 .

[27]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[28]  Robert F. Tichy,et al.  Generalized Zeckendorf expansions , 1994 .