The distribution of gaps between summands in generalized Zeckendorf decompositions
暂无分享,去创建一个
Shiyu Li | Steven J. Miller | Amanda Bower | Rachel Insoft | Philip Tosteson | Amanda Bower | Shiyue Li | Philip Tosteson | R. Insoft
[1] Steven J. Miller,et al. From Fibonacci numbers to central limit type theorems , 2010, J. Comb. Theory A.
[2] S. Goldberg,et al. Introduction to Difference Equations , 1958 .
[3] Steven J. Miller,et al. Gaussian Behavior in Generalized Zeckendorf Decompositions , 2014 .
[4] Michael Drmota,et al. The distribution of the sum-of-digits function , 1998 .
[5] Robert F. Tichy,et al. Contributions to digit expansions with respect to linear recurrences , 1990 .
[6] D. E. Daykin. Representation of Natural Numbers as Sums of Generalised Fibonacci Numbers , 1960 .
[7] Grabner,et al. The distribution of the sum-of-digits function , 1998 .
[8] Alain Thomas,et al. Systems of numeration and fractal functions relating to substitutions (French) , 1989 .
[9] P. Erdös,et al. The Gaussian Law of Errors in the Theory of Additive Number Theoretic Functions , 1940 .
[10] Steven J. Miller,et al. On the number of summands in Zeckendorf decompositions , 2010, 1008.3204.
[11] Steven J. Miller,et al. A Generalization of Fibonacci Far-Difference Representations and Gaussian Behavior , 2013, The Fibonacci Quarterly.
[12] Steven J. Miller,et al. Gaussian Distribution of the Number of Summands in Generalized Zeckendorf Decompositions in Small Intervals , 2015, Integers.
[13] Steven J. Miller,et al. A Probabilistic Approach to Generalized Zeckendorf Decompositions , 2014, SIAM J. Discret. Math..
[14] C. G. Lekkerkerker,et al. Voorstelling van natuurlijke getallen door een som van getallen van fibonacci , 1951 .
[15] Robert F. Tichy,et al. Corrigendum to “generalized Zeckendorf expansions” , 1994 .
[16] Wolfgang Steiner. Parry expansions of polynomial sequences. , 2002 .
[17] Steven J. Miller,et al. Gaussian Behavior of the Number of Summands in Zeckendorf Decompositions in Small Intervals , 2014, The Fibonacci Quarterly.
[18] Bert Fristedt,et al. A modern approach to probability theory , 1996 .
[19] Steven J. Miller,et al. Generalizing Zeckendorf’s Theorem: The Kentucky Sequence , 2014, The Fibonacci Quarterly.
[20] Jean-Marie Dumont,et al. Systemes de Numeration et Fonctions Fractales Relatifs aux Substitutions , 1989, Theor. Comput. Sci..
[21] Steven J. Miller,et al. The Average Gap Distribution for Generalized Zeckendorf Decompositions , 2012, The Fibonacci Quarterly.
[22] Edward B. Burger,et al. A generalization of a theorem of Lekkerkerker to Ostrowski's decomposition of natural numbers , 2012 .
[23] Mark Schilling,et al. The Longest Run of Heads , 1990 .
[24] Steven J. Miller,et al. Generalizing Zeckendorf's Theorem to f-decompositions , 2013, 1309.5599.
[25] Mario Lamberger,et al. Distribution properties of digital expansions arising from linear recurrences , 2003 .
[26] Hannah Alpert,et al. Differences of Multiple Fibonacci Numbers , 2009 .
[27] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[28] Robert F. Tichy,et al. Generalized Zeckendorf expansions , 1994 .