Direct control of high magnetic fields for cold atom experiments based on NV centers

In ultracold quantum gases, the interactions between the individual atoms can be controlled by applying magnetic bias fields. As magnetic field fluctuations limit the precision here, typically a feedback loop needs to be employed to regulate the current through a pair of Helmholtz coils. No commercially available magnetic field sensor allows to measure large fields directly with high enough precision, leading to many unsatisfactory solutions being used in experiments. Here, we demonstrate a direct magnetic field stabilization in a regime previously not accessible, using NV centers as the magnetic field sensor. This allows us to measure and stabilize fields of 4.66 mT down to 12 nT RMS noise over the course of 24 h, measured on a 1 Hz bandwidth. We achieve a control of better than 1 ppm after 20 min of integration time, ensuring high long-term stability for experiments. This approach extends direct magnetic field control to strong magnetic fields, which could enable new precise quantum simulations in this regime.

[1]  P. Hauke,et al.  A scalable realization of local U(1) gauge invariance in cold atomic mixtures , 2020, Science.

[2]  Igor Savukov,et al.  Diamond magnetometer enhanced by ferrite flux concentrators , 2019, Physical review research.

[3]  I. Bloch,et al.  Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains , 2019, Science.

[4]  G. Natale,et al.  Long-Lived and Transient Supersolid Behaviors in Dipolar Quantum Gases , 2019, Physical Review X.

[5]  M. Alava,et al.  Predicting Creep Failure from Cracks in a Heterogeneous Material using Acoustic Emission and Speckle Imaging , 2019, Physical Review Applied.

[6]  T. Pfau,et al.  Transient Supersolid Properties in an Array of Dipolar Quantum Droplets , 2019, Physical Review X.

[7]  M. Markham,et al.  Cross-Sensor Feedback Stabilization of an Emulated Quantum Spin Gyroscope , 2018, Physical Review Applied.

[8]  P. Kunkel,et al.  Observation of universal dynamics in a spinor Bose gas far from equilibrium , 2018, Nature.

[9]  P. Kunkel,et al.  Observation of universal quantum dynamics far from equilibrium , 2018 .

[10]  R. Walsworth,et al.  Simultaneous Broadband Vector Magnetometry Using Solid-State Spins , 2018, Physical Review Applied.

[11]  Kerry A. Johnson,et al.  Robust high-dynamic-range vector magnetometry with nitrogen-vacancy centers in diamond , 2018, Applied Physics Letters.

[12]  P. Hauke,et al.  Quantum simulation of lattice gauge theories using Wilson fermions , 2018, Quantum Science and Technology.

[13]  P. Cheiney,et al.  Quantum liquid droplets in a mixture of Bose-Einstein condensates , 2018 .

[14]  Ronald L. Walsworth,et al.  High-resolution magnetic resonance spectroscopy using a solid-state spin sensor , 2017, Nature.

[15]  I. Zhukov,et al.  ODMR Spectroscopy of NV− Centers in Diamond Under High MW Power , 2017 .

[16]  P.-F. Cohadon,et al.  PyRPL (Python Red Pitaya Lockbox) — An open-source software package for FPGA-controlled quantum optics experiments , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[17]  Subhas Chandra Mukhopadhyay,et al.  High Sensitivity Magnetometers , 2017 .

[18]  Ronald L. Walsworth,et al.  Optical magnetic detection of single-neuron action potentials using quantum defects in diamond , 2016, Proceedings of the National Academy of Sciences.

[19]  A. Zheltikov,et al.  Room-temperature magnetic gradiometry with fiber-coupled nitrogen-vacancy centers in diamond. , 2015, Optics letters.

[20]  On solving the quantum many-body problem , 2015 .

[21]  J. Schmiedmayer,et al.  On solving quantum many-body problems by experiment , 2015, 1505.03126.

[22]  Shizhong Zhang,et al.  Coherent Heteronuclear Spin Dynamics in an Ultracold Spinor Mixture. , 2015, Physical review letters.

[23]  Susumu Takahashi,et al.  High-frequency and high-field optically detected magnetic resonance of nitrogen-vacancy centers in diamond , 2015, 1502.03420.

[24]  T. Wolf,et al.  Subpicotesla Diamond Magnetometry , 2014, 1411.6553.

[25]  Dirk Englund,et al.  Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide , 2014, Nature Physics.

[26]  J. Maze,et al.  Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: A first-principles study , 2014 .

[27]  A. O. Levchenko,et al.  Fiber-optic magnetic-field imaging. , 2014, Optics letters.

[28]  Augusto Smerzi,et al.  Fisher information and entanglement of non-Gaussian spin states , 2014, Science.

[29]  A. O. Levchenko,et al.  Electron spin manipulation and readout through an optical fiber , 2014, Scientific Reports.

[30]  D. Hume,et al.  Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. , 2014, Physical review letters.

[31]  M. Mitchell,et al.  Shot-noise-limited magnetometer with sub-picotesla sensitivity at room temperature. , 2014, The Review of scientific instruments.

[32]  Takeshi Morita,et al.  IWPMA 2012 9th international workshop on piezoelectric materials and applications in actuators , 2013 .

[33]  B. Dufay,et al.  Development of a High Sensitivity Giant Magneto-Impedance Magnetometer: Comparison With a Commercial Flux-Gate , 2013, IEEE Transactions on Magnetics.

[34]  E. Maréchal,et al.  Spontaneous demagnetization of a dipolar spinor Bose gas in an ultralow magnetic field. , 2011, Physical review letters.

[35]  C. S. Sundar,et al.  Development of high field SQUID magnetometer for magnetization studies up to 7 T and temperatures in the range from 4.2 to 300 K. , 2011, The Review of scientific instruments.

[36]  Neil B. Manson,et al.  The negatively charged nitrogen-vacancy centre in diamond: the electronic solution , 2010, 1008.5224.

[37]  Pavel Ripka,et al.  Advances in Magnetic Field Sensors , 2010, IEEE Sensors Journal.

[38]  F. Dolde,et al.  High sensitivity magnetic imaging using an array of spins in diamond. , 2010, The Review of scientific instruments.

[39]  Svenja Knappe,et al.  Femtotesla atomic magnetometry in a microfabricated vapor cell. , 2010, Optics express.

[40]  M. Huber,et al.  Self-aligned nanoscale SQUID on a tip. , 2010, Nano letters.

[41]  A. C. Maloof,et al.  Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer , 2009, 0910.2206.

[42]  Philip C. D. Hobbs,et al.  Building Electro-Optical Systems: Making It all Work , 2009 .

[43]  D. Drung,et al.  Highly Sensitive and Easy-to-Use SQUID Sensors , 2007, IEEE Transactions on Applied Superconductivity.

[44]  M. Radparvar,et al.  Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples , 2003 .

[45]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[46]  Ed Ramsden Hall-Effect Sensors , 2001 .

[47]  O Chubar,et al.  A three-dimensional magnetostatics computer code for insertion devices. , 1998, Journal of synchrotron radiation.

[48]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[49]  William J. Gallagher,et al.  High‐resolution scanning SQUID microscope , 1995 .

[50]  J. Wrachtrup,et al.  Optical detection of magnetic resonance in a single molecule , 1993, Nature.

[51]  Pavel Ripka,et al.  Review of fluxgate sensors , 1992 .

[52]  J H N Loubser,et al.  REVIEW: Electron spin resonance in the study of diamond , 1978 .

[53]  W. T. Welford,et al.  The Optics of Nonimaging Concentrators: Light and Solar Energy , 1978 .