Comprehensive Morpho-Electrotonic Analysis Shows 2 Distinct Classes of L2 and L3 Pyramidal Neurons in Human Temporal Cortex

Abstract There have been few quantitative characterizations of the morphological, biophysical, and cable properties of neurons in the human neocortex. We employed feature‐based statistical methods on a rare data set of 60 3D reconstructed pyramidal neurons from L2 and L3 in the human temporal cortex (HL2/L3 PCs) removed after brain surgery. Of these cells, 25 neurons were also characterized physiologically. Thirty‐two morphological features were analyzed (e.g., dendritic surface area, 36 333 ± 18 157 &mgr;m2; number of basal trees, 5.55 ± 1.47; dendritic diameter, 0.76 ± 0.28 &mgr;m). Eighteen features showed a significant gradual increase with depth from the pia (e.g., dendritic length and soma radius). The other features showed weak or no correlation with depth (e.g., dendritic diameter). The basal dendritic terminals in HL2/L3 PCs are particularly elongated, enabling multiple nonlinear processing units in these dendrites. Unlike the morphological features, the active biophysical features (e.g., spike shapes and rates) and passive/cable features (e.g., somatic input resistance, 47.68 ± 15.26 M&OHgr;, membrane time constant, 12.03 ± 1.79 ms, average dendritic cable length, 0.99 ± 0.24) were depth‐independent. A novel descriptor for apical dendritic topology yielded 2 distinct classes, termed hereby as “slim‐tufted” and “profuse‐tufted” HL2/L3 PCs; the latter class tends to fire at higher rates. Thus, our morpho‐electrotonic analysis shows 2 distinct classes of HL2/L3 PCs.

[1]  Henry Markram,et al.  A Topological Representation of Branching Neuronal Morphologies , 2017, Neuroinformatics.

[2]  Henry Markram,et al.  Morphological Diversity Strongly Constrains Synaptic Connectivity and Plasticity , 2017, Cerebral cortex.

[3]  Henry Markram,et al.  Rich cell-type-specific network topology in neocortical microcircuitry , 2017, Nature Neuroscience.

[4]  M. Larkum,et al.  Active cortical dendrites modulate perception , 2016, Science.

[5]  Bo Wang,et al.  Firing Frequency Maxima of Fast-Spiking Neurons in Human, Monkey, and Mouse Neocortex , 2016, Front. Cell. Neurosci..

[6]  Guy Eyal,et al.  Unique membrane properties and enhanced signal processing in human neocortical neurons , 2016, eLife.

[7]  C. Bielza,et al.  Dendritic-branching angles of pyramidal neurons of the human cerebral cortex , 2016, Brain Structure and Function.

[8]  Henry Markram,et al.  Quantifying topological invariants of neuronal morphologies , 2016, ArXiv.

[9]  Arno C. Schmitt,et al.  Robustness of sensory-evoked excitation is increased by inhibitory inputs to distal apical tuft dendrites , 2015, Proceedings of the National Academy of Sciences.

[10]  Guy Eyal,et al.  Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocortex , 2015, Cerebral cortex.

[11]  Andrew S. Johnson,et al.  Beyond Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon Projection Patterns in Rat Vibrissal Cortex , 2015, Cerebral cortex.

[12]  Csaba Varga,et al.  Molecular and Electrophysiological Characterization of GABAergic Interneurons Expressing the Transcription Factor COUP-TFII in the Adult Human Temporal Cortex , 2015, Cerebral cortex.

[13]  Yun Wang,et al.  A Subtype of Inhibitory Interneuron with Intrinsic Persistent Activity in Human and Monkey Neocortex. , 2015, Cell reports.

[14]  D. Feldmeyer,et al.  Morphological and physiological characterization of pyramidal neuron subtypes in rat medial prefrontal cortex. , 2015, Cerebral cortex.

[15]  Christine Grienberger,et al.  Dendritic function in vivo , 2015, Trends in Neurosciences.

[16]  Mark T. Harnett,et al.  Distribution and Function of HCN Channels in the Apical Dendritic Tuft of Neocortical Pyramidal Neurons , 2015, The Journal of Neuroscience.

[17]  Dirk Feldmeyer,et al.  Electrophysiological and morphological characterization of neuronal microcircuits in acute brain slices using paired patch-clamp recordings. , 2015, Journal of visualized experiments : JoVE.

[18]  Daniele Linaro,et al.  High Bandwidth Synaptic Communication and Frequency Tracking in Human Neocortex , 2014, PLoS biology.

[19]  Li I. Zhang,et al.  A Feedforward Inhibitory Circuit Mediates Lateral Refinement of Sensory Representation in Upper Layer 2/3 of Mouse Primary Auditory Cortex , 2014, The Journal of Neuroscience.

[20]  Yousheng Shu,et al.  Molecular identity of axonal sodium channels in human cortical pyramidal cells , 2014, Front. Cell. Neurosci..

[21]  Ingo Bojak,et al.  A gradual depth-dependent change in connectivity features of supragranular pyramidal cells in rat barrel cortex , 2014, Brain Structure and Function.

[22]  Spencer L. Smith,et al.  Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo , 2013, Nature.

[23]  C. D. de Kock,et al.  Mechanisms Underlying the Rules for Associative Plasticity at Adult Human Neocortical Synapses , 2013, The Journal of Neuroscience.

[24]  Rafael Yuste,et al.  Age-based comparison of human dendritic spine structure using complete three-dimensional reconstructions. , 2013, Cerebral cortex.

[25]  J. Schiller,et al.  Active properties of neocortical pyramidal neuron dendrites. , 2013, Annual review of neuroscience.

[26]  Christine M Constantinople,et al.  Deep Cortical Layers Are Activated Directly by Thalamus , 2013, Science.

[27]  Henry Markram,et al.  Preserving axosomatic spiking features despite diverse dendritic morphology. , 2013, Journal of neurophysiology.

[28]  Manuel Marx,et al.  Morphology and Physiology of Excitatory Neurons in Layer 6b of the Somatosensory Rat Barrel Cortex , 2012, Cerebral cortex.

[29]  Fredrik Lauritzen,et al.  Monocarboxylate transporters in temporal lobe epilepsy: roles of lactate and ketogenic diet , 2013, Brain Structure and Function.

[30]  Mark T. Harnett,et al.  Nonlinear dendritic integration of sensory and motor input during an active sensing task , 2012, Nature.

[31]  D. Feldmeyer Excitatory neuronal connectivity in the barrel cortex , 2012, Front. Neuroanat..

[32]  James G. King,et al.  Intrinsic morphological diversity of thick‐tufted layer 5 pyramidal neurons ensures robust and invariant properties of in silico synaptic connections , 2012, The Journal of physiology.

[33]  H. S. Meyer,et al.  Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex , 2011, Cerebral cortex.

[34]  M. Beauregard,et al.  Early influence of the rs4675690 on the neural substrates of sadness. , 2011, Journal of affective disorders.

[35]  Nathalie L Rochefort,et al.  Functional mapping of single spines in cortical neurons in vivo , 2011, Nature.

[36]  Javier DeFelipe,et al.  The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity , 2011, Front. Neuroanat..

[37]  B. Sakmann,et al.  Three-dimensional axon morphologies of individual layer 5 neurons indicate cell type-specific intracortical pathways for whisker motion and touch , 2011, Proceedings of the National Academy of Sciences.

[38]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[39]  A. Berrebi,et al.  Connections of the Superior Paraolivary Nucleus of the Rat: II. Reciprocal Connections with the Tectal Longitudinal Column , 2010, Front. Neuroanat..

[40]  Alexander Borst,et al.  One Rule to Grow Them All: A General Theory of Neuronal Branching and Its Practical Application , 2010, PLoS Comput. Biol..

[41]  H. S. Meyer,et al.  Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex , 2010, Cerebral cortex.

[42]  C. Petersen,et al.  Long‐range connectivity of mouse primary somatosensory barrel cortex , 2010, The European journal of neuroscience.

[43]  K. Harris,et al.  Laminar Structure of Spontaneous and Sensory-Evoked Population Activity in Auditory Cortex , 2009, Neuron.

[44]  B. Sakmann,et al.  Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific , 2009, Proceedings of the National Academy of Sciences.

[45]  A. Polsky,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons: A New Unifying Principle , 2009, Science.

[46]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[47]  C. Wahl-Schott,et al.  HCN channels: Structure, cellular regulation and physiological function , 2009, Cellular and Molecular Life Sciences.

[48]  Bert Sakmann,et al.  Driver or Coincidence Detector: Modal Switch of a Corticothalamic Giant Synapse Controlled by Spontaneous Activity and Short-Term Depression , 2008, The Journal of Neuroscience.

[49]  Csaba Varga,et al.  Complex Events Initiated by Individual Spikes in the Human Cerebral Cortex , 2008, PLoS biology.

[50]  Kevin D Alloway,et al.  Information processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits. , 2008, Cerebral cortex.

[51]  A. Heynen,et al.  Methodological approaches to exploring epileptic disorders in the human brain in vitro , 2008 .

[52]  Edward M. Callaway,et al.  Retrograde Tracing with Recombinant Rabies Virus Reveals Correlations Between Projection Targets and Dendritic Architecture in Layer 5 of Mouse Barrel Cortex , 2007, Frontiers in neural circuits.

[53]  B. Sakmann,et al.  Dendritic Spikes in Apical Dendrites of Neocortical Layer 2/3 Pyramidal Neurons , 2007, The Journal of Neuroscience.

[54]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[55]  D. McCormick,et al.  α2A-Adrenoceptors Strengthen Working Memory Networks by Inhibiting cAMP-HCN Channel Signaling in Prefrontal Cortex , 2007, Cell.

[56]  G. Stuart,et al.  Single Ih Channels in Pyramidal Neuron Dendrites: Properties, Distribution, and Impact on Action Potential Output , 2006, The Journal of Neuroscience.

[57]  Y. Kawaguchi,et al.  Recurrent Connection Patterns of Corticostriatal Pyramidal Cells in Frontal Cortex , 2006, The Journal of Neuroscience.

[58]  J. DeFelipe,et al.  Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[59]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[60]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[61]  G. Elston,et al.  A study of pyramidal cell structure in the cingulate cortex of the macaque monkey with comparative notes on inferotemporal and primary visual cortex. , 2004, Cerebral cortex.

[62]  Matthew F. Nolan,et al.  A Behavioral Role for Dendritic Integration HCN1 Channels Constrain Spatial Memory and Plasticity at Inputs to Distal Dendrites of CA1 Pyramidal Neurons , 2004, Cell.

[63]  Wenjun Gao,et al.  Target‐specific differences in somatodendritic morphology of layer V pyramidal neurons in rat motor cortex , 2004, The Journal of comparative neurology.

[64]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[65]  Edward M. Callaway,et al.  Feedforward, feedback and inhibitory connections in primate visual cortex , 2004, Neural Networks.

[66]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[67]  Massimiliano Pontil,et al.  Leave One Out Error, Stability, and Generalization of Voting Combinations of Classifiers , 2004, Machine Learning.

[68]  R. Nieuwenhuys The neocortex , 1994, Anatomy and Embryology.

[69]  Gábor Tamás,et al.  Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites , 2002, Nature Neuroscience.

[70]  J. DeFelipe,et al.  Microstructure of the neocortex: Comparative aspects , 2002, Journal of neurocytology.

[71]  V. Murthy,et al.  Dendritic spines , 1998 .

[72]  G. Elston,et al.  The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey , 2001, The Journal of Neuroscience.

[73]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[74]  M. Larkum,et al.  High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. , 2001, Journal of neurophysiology.

[75]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[76]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[77]  J. Zhu,et al.  Maturation of layer 5 neocortical pyramidal neurons: amplifying salient layer 1 and layer 4 inputs by Ca2+ action potentials in adult rat tuft dendrites , 2000, The Journal of physiology.

[78]  G. Stuart,et al.  Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[79]  P Johannsen,et al.  Stimulus-dependent central processing of auditory stimuli: a PET study. , 1999, Scandinavian audiology.

[80]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[81]  J. Desmond,et al.  The neural basis of visual skill learning: an fMRI study of mirror reading. , 1998, Cerebral cortex.

[82]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[83]  Idan Segev,et al.  The Impact of Parallel Fiber Background Activity on the Cable Properties of Cerebellar Purkinje Cells , 1992, Neural Computation.

[84]  J. Bolz,et al.  Morphological types of projection neurons in layer 5 of cat visual cortex , 1990, The Journal of comparative neurology.

[85]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  B. Schofield,et al.  Dendritic morphology and axon collaterals of corticotectal, corticopontine, and callosal neurons in layer V of primary visual cortex of the hooded rat , 1988, The Journal of comparative neurology.

[87]  David G. Stork,et al.  Pattern Classification , 1973 .

[88]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.