Well-posedness for the Navier–Stokes–Nernst–Planck–Poisson system in Triebel–Lizorkin space and Besov space with negative indices

Abstract This paper is concerned with the well-posedness of the Navier–Stokes–Nerst–Planck–Poisson system (NSNPP). Let s p = − 2 + n / p . We prove that the NSNPP has a unique local solution ( u → , v , w ) ∈ E u T ⁎ × E v T ⁎ × E v T ⁎ for ( u → 0 , v 0 , w 0 ) in a subspace, i.e., V u 1 × V v 1 × V v 1 , of F ∞ − 1 , 2 × B p s p , ∞ × B p s p , ∞ with ∇ ⋅ u → 0 = 0 . We also prove that there exists a unique small global solution ( u → , v , w ) ∈ E u ∞ × E v ∞ × E v ∞ for any small initial data ( u → 0 , v 0 , w 0 ) ∈ F ˙ ∞ − 1 , 2 × B ˙ p s p , ∞ × B ˙ p s p , ∞ with ∇ ⋅ u → 0 = 0 .

[1]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[2]  H. Gajewski,et al.  On the basic equations for carrier transport in semiconductors , 1986 .

[3]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[4]  Herbert Koch,et al.  Well-posedness for the Navier–Stokes Equations , 2001 .

[5]  H. Helson Harmonic Analysis , 1983 .

[6]  S. Cui,et al.  Well-posedness of a dissipative nonlinear electrohydrodynamic system in modulation spaces , 2010 .

[7]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[8]  H. Miura Remark on uniqueness of mild solutions to the Navier–Stokes equations , 2005 .

[9]  L. Grafakos Classical and modern Fourier analysis , 2003 .

[10]  Nicolas Vauchelet,et al.  A note on the long time behavior for the drift-diffusion-Poisson system , 2004 .

[11]  R. Probstein Physicochemical Hydrodynamics: An Introduction , 1989 .

[12]  Rolf J. Ryham,et al.  Existence, Uniqueness, Regularity and Long-term Behavior for Dissipative Systems Modeling Electrohydrodynamics , 2009, 0910.4973.

[13]  Pierre Gilles Lemarié-Rieusset,et al.  Recent Developments in the Navier-Stokes Problem , 2002 .

[14]  Amnon Pazy,et al.  Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.

[15]  Marco Cannone,et al.  Chapter 3 - Harmonic Analysis Tools for Solving the Incompressible Navier–Stokes Equations , 2005 .

[16]  Piotr Biler,et al.  The Debye system: existence and large time behavior of solutions , 1994 .

[17]  Markus Schmuck,et al.  ANALYSIS OF THE NAVIER–STOKES–NERNST–PLANCK–POISSON SYSTEM , 2009 .

[18]  H. Reinhard,et al.  Equations aux dérivées partielles , 1987 .

[19]  M. Bazant,et al.  Induced-charge electrokinetic phenomena: theory and microfluidic applications. , 2003, Physical review letters.

[20]  Denis Serre,et al.  Handbook of mathematical fluid dynamics , 2002 .

[21]  J. Bourgain,et al.  Ill-posedness of the Navier-Stokes equations in a critical space in 3D , 2008, 0807.0882.

[22]  Piotr Biler,et al.  Long Time Behavior of Solutions to Nernst – Planck and Debye – Hückel Drift – Diffusion Systems , 1999 .