Well-posedness for the Navier–Stokes–Nernst–Planck–Poisson system in Triebel–Lizorkin space and Besov space with negative indices
暂无分享,去创建一个
Jihong Zhao | Chao Deng | Shangbin Cui | S. Cui | C. Deng | Jihong Zhao
[1] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[2] H. Gajewski,et al. On the basic equations for carrier transport in semiconductors , 1986 .
[3] Takashi Kato,et al. StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .
[4] Herbert Koch,et al. Well-posedness for the Navier–Stokes Equations , 2001 .
[5] H. Helson. Harmonic Analysis , 1983 .
[6] S. Cui,et al. Well-posedness of a dissipative nonlinear electrohydrodynamic system in modulation spaces , 2010 .
[7] Hiroshi Fujita,et al. On the Navier-Stokes initial value problem. I , 1964 .
[8] H. Miura. Remark on uniqueness of mild solutions to the Navier–Stokes equations , 2005 .
[9] L. Grafakos. Classical and modern Fourier analysis , 2003 .
[10] Nicolas Vauchelet,et al. A note on the long time behavior for the drift-diffusion-Poisson system , 2004 .
[11] R. Probstein. Physicochemical Hydrodynamics: An Introduction , 1989 .
[12] Rolf J. Ryham,et al. Existence, Uniqueness, Regularity and Long-term Behavior for Dissipative Systems Modeling Electrohydrodynamics , 2009, 0910.4973.
[13] Pierre Gilles Lemarié-Rieusset,et al. Recent Developments in the Navier-Stokes Problem , 2002 .
[14] Amnon Pazy,et al. Semigroups of Linear Operators and Applications to Partial Differential Equations , 1992, Applied Mathematical Sciences.
[15] Marco Cannone,et al. Chapter 3 - Harmonic Analysis Tools for Solving the Incompressible Navier–Stokes Equations , 2005 .
[16] Piotr Biler,et al. The Debye system: existence and large time behavior of solutions , 1994 .
[17] Markus Schmuck,et al. ANALYSIS OF THE NAVIER–STOKES–NERNST–PLANCK–POISSON SYSTEM , 2009 .
[18] H. Reinhard,et al. Equations aux dérivées partielles , 1987 .
[19] M. Bazant,et al. Induced-charge electrokinetic phenomena: theory and microfluidic applications. , 2003, Physical review letters.
[20] Denis Serre,et al. Handbook of mathematical fluid dynamics , 2002 .
[21] J. Bourgain,et al. Ill-posedness of the Navier-Stokes equations in a critical space in 3D , 2008, 0807.0882.
[22] Piotr Biler,et al. Long Time Behavior of Solutions to Nernst – Planck and Debye – Hückel Drift – Diffusion Systems , 1999 .