A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements.

We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10(6)-10(7) photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

[1]  Vladimir A. Arkadiev,et al.  An efficient X-ray spectrometer based on thin mosaic crystal films and its application in various fields of X-ray spectroscopy , 2009 .

[2]  D. Koningsberger,et al.  X-ray absorption : principles, applications, techniques of EXAFS, SEXAFS and XANES , 1988 .

[3]  H. Namatame,et al.  X-ray Absorption Near Edge Structure Study on Valence Changes of Ni and Co in Li1−xNi0.82Co0.15M0.03O2 (M=Nb, Ti) Cathode Materials , 2010 .

[4]  T. Uruga,et al.  In situ observation of nucleation and growth process of gold nanoparticles by quick XAFS spectroscopy. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  E. Stern,et al.  Extended x-ray-absorption fine-structure technique. II. Experimental practice and selected results , 1975 .

[6]  Y. Cho,et al.  Variable rowland radius laboratory vacuum surface-sensitive x-ray absorption fine structure spectrometer. , 2007, The Review of scientific instruments.

[7]  H. Sakaebe,et al.  Study of the Capacity Fading Mechanism for Fe-Substituted LiCoO2 Positive Electrode , 2004 .

[8]  Xiao‐Qing Yang,et al.  INVESTIGATION OF THE LOCAL STRUCTURE OF THE LINI0.5MN0.5O2 CATHODE MATERIAL DURING ELECTROCHEMICAL CYCLING BY X-RAY ABSORPTION AND NMR SPECTROSCOPY , 2002 .

[9]  K. Tohji,et al.  Customization of an in-house XAFS spectrometer for sulfur measurement , 2005 .

[10]  J. Szlachetko,et al.  High-resolution Laue-type DuMond curved crystal spectrometer. , 2013, The Review of scientific instruments.

[11]  Y. Zou,et al.  A high-resolution X-ray fluorescence spectrometer and its application at SSRF , 2013 .

[12]  C. Love,et al.  Review of LiFePO4 Phase Transition Mechanisms and New Observations from X-ray Absorption Spectroscopy , 2013 .

[13]  P. Pani,et al.  GEMS: Underwater spectrometer for long-term radioactivity measurements , 2011 .

[14]  B. Kanngießer,et al.  A novel von Hamos spectrometer for efficient X-ray emission spectroscopy in the laboratory. , 2014, The Review of scientific instruments.

[15]  V. Briois,et al.  X-ray absorption spectroscopy and heterogeneous catalysis: Performances at the SOLEIL's SAMBA beamline , 2013 .

[16]  G. Sankar,et al.  The role of XAFS in the in situ and ex situ elucidation of active sites in designed solid catalysts. , 2001, Journal of synchrotron radiation.

[17]  V. Shuvaeva,et al.  Laboratory diffractometer-based XAFS spectrometer. , 1999, Journal of synchrotron radiation.

[18]  R. Henning,et al.  Fast Detection Allows Analysis of the Electronic Structure of Metalloprotein by X-ray Emission Spectroscopy at Room Temperature. , 2012, The journal of physical chemistry letters.

[19]  D. Ramaker,et al.  The atomic AXAFS and Delta(mu) XANES techniques as applied to heterogeneous catalysis and electrocatalysis. , 2010, Physical chemistry chemical physics : PCCP.

[20]  D. Sokaras,et al.  A high resolution and large solid angle x-ray Raman spectroscopy end-station at the Stanford Synchrotron Radiation Lightsource. , 2012, The Review of scientific instruments.

[21]  Yongfeng Hu,et al.  In situ intermediate-energy X-ray catalysis research at the advanced photon source beamline 9-BM , 2013 .

[22]  Liquan Chen,et al.  Electronic structural changes of the electrochemically delithiated LiFe0.5Co0.5PO4 cathode material studied by X-ray absorption spectroscopy , 2008 .

[23]  C. F. Hempstead,et al.  "Thickness Effect" in Absorption Spectra near Absorption Edges , 1957 .

[24]  A. Marschilok,et al.  Variation in the iron oxidation states of magnetite nanocrystals as a function of crystallite size: The impact on electrochemical capacity , 2013 .

[25]  W. T. Elam,et al.  Multielement spectrometer for efficient measurement of the momentum transfer dependence of inelastic x-ray scattering , 2006 .

[26]  K. Tohji,et al.  Laboratory EXAFS spectrometer with a bent crystal, a solid‐state detector, and a fast detection system , 1983 .

[27]  A. Frenkel,et al.  Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. , 2012, Angewandte Chemie.

[28]  V. Romano,et al.  Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube. , 2014, The Review of scientific instruments.

[29]  U. Bergmann,et al.  Characterization of the Mn Oxidation States in Photosystem II by Kβ X-ray Fluorescence Spectroscopy , 1998 .

[30]  Xiao‐Qing Yang,et al.  In Situ X-ray Absorption Spectroscopic Study on LiNi0.5Mn0.5O2 Cathode Material during Electrochemical Cycling , 2003 .

[31]  M. Wakihara,et al.  XANES and EXAFS analysis of nano-size manganese dioxide as a cathode material for lithium-ion batteriesElectronic supplementary information (ESI) available: raw XAFS data; imaginary part of the FT; inverse FT. See http://www.rsc.org/suppdata/jm/b3/b315443b/ , 2004 .

[32]  Toyoki Okumura,et al.  Study on Li de-intercalation/intercalation mechanism for a high capacity layered Li1.20Ni0.17Co0.10Mn0.53O2 material , 2012 .

[33]  H. Iwasaki,et al.  A Stable In-Laboratory EXAFS Measurement System , 1983 .

[34]  U. Bergmann,et al.  High Resolution K Capture X-ray Fluorescence Spectroscopy: A New Tool for Chemical Characterization , 1999 .

[35]  E. Cairns,et al.  X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell. , 2004, Journal of synchrotron radiation.

[36]  J. Tarascon,et al.  In situ Fe XAFS of reversible lithium insertion in a flexible metal organic framework material , 2009 .

[37]  I. Nakai,et al.  In situTransmission X-Ray Absorption Fine Structure Analysis of the Charge–Discharge Process in LiMn2O4, a Rechargeable Lithium Battery Material , 1997 .

[38]  R. Buschert,et al.  Laboratory EXAFS in a dispersive mode , 1988 .

[39]  U. Bergmann,et al.  Influence of the core hole on Kß emission following photoionization or orbital electron capture: a comparison using MnO and 55Fe2O3 , 2001 .

[40]  Y. Inada,et al.  In‐laboratory stopped‐flow extended x‐ray absorption fine structure apparatus in the dispersive mode for determination of the structure of short‐lived intermediates , 1994 .

[41]  H. Sakaebe,et al.  Synthesis, Cation Distribution, and Electrochemical Properties of Fe-Substituted Li2MnO3 as a Novel 4 V Positive Electrode Material , 2002 .

[42]  Anna Bergamaschi,et al.  Five-element Johann-type x-ray emission spectrometer with a single-photon-counting pixel detector. , 2011, The Review of scientific instruments.

[43]  R. Henning,et al.  Kinetic modeling of the X-ray-induced damage to a metalloprotein. , 2013, The journal of physical chemistry. B.

[44]  Alojz Kodre,et al.  In-situ XAS study on Li2MnSiO4 and Li2FeSiO4 cathode materials , 2009 .

[45]  Uwe Bergmann,et al.  High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes—electronic and structural information , 2005 .

[46]  A. Stierle,et al.  Novel In Situ Probes for Nanocatalysis , 2007 .

[47]  A. Williams Laboratory x‐ray spectrometer for EXAFS and XANES measurements , 1983 .

[48]  A. Frenkel,et al.  Catalysis and In Situ Studies of Rh1/Co3O4 Nanorods in Reduction of NO with H2 , 2013 .

[49]  A. Shukla,et al.  High-resolution spectroscopy on an X-ray absorption beamline. , 2009, Journal of synchrotron radiation.

[50]  G. Ceder,et al.  In-Situ X-ray Absorption Spectroscopic Study on Variation of Electronic Transitions and Local Structure of LiNi1/3Co1/3Mn1/3O2 Cathode Material during Electrochemical Cycling , 2005 .

[51]  Grant Bunker,et al.  Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy , 2010 .

[52]  S. Ogale,et al.  An automated laboratory EXAFS spectrometer of Johansson type: indigenous development and testing , 1991 .

[53]  C. N. Kodituwakku,et al.  A 2 m inelastic X-ray scattering spectrometer at CMC-XOR, Advanced Photon Source. , 2007, Journal of synchrotron radiation.

[54]  R. Haensel,et al.  Versatile curved crystal spectrometer for laboratory extended x‐ray absorption fine structure measurements , 1983 .

[55]  Min Gyu Kim,et al.  In situ X-ray absorption spectroscopic study for the electrochemical delithiation of a cathode LiFe0.4Mn0.6PO4 material , 2010 .

[56]  P. Georgopoulos,et al.  Design criteria for a laboratory EXAFS facility , 1981 .

[57]  K. Tohji,et al.  Double‐crystal spectrometer for laboratory EXAFS spectroscopy , 1988 .

[58]  S. Huotari,et al.  Study on the reflectivity properties of spherically bent analyser crystals. , 2014, Journal of synchrotron radiation.

[59]  Grant Bunker Introduction to XAFS: Index , 2010 .

[60]  D. E. Keller,et al.  Combining operando techniques in one spectroscopic-reaction cell: New opportunities for elucidating the active site and related reaction mechanism in catalysis , 2006 .

[61]  G. Mickelson,et al.  Characterizing industrial catalysts using in situ XAFS under identical conditions. , 2010, Physical chemistry chemical physics : PCCP.

[62]  C. Prestipino,et al.  Quick-EXAFS implementation on the general purpose EXAFS beamline at ESRF , 2011, Journal of synchrotron radiation.

[63]  S. Mangold,et al.  X-ray absorption spectroscopy on heterogeneous catalysts at the new XAS beamline at ANKA , 2005 .

[64]  Emily V. Carino,et al.  Application of Operando XAS, XRD, and Raman Spectroscopy for Phase Speciation in Water Gas Shift Reaction Catalysts , 2012 .

[65]  D. Sokaras,et al.  A seven-crystal Johann-type hard x-ray spectrometer at the Stanford Synchrotron Radiation Lightsource. , 2013, The Review of scientific instruments.

[66]  E. Cairns,et al.  Structural Investigations of LiFePO4 Electrodes by Fe X-ray Absorption Spectroscopy , 2004 .

[67]  Y. Yacoby,et al.  Variable Rowland radius laboratory EXAFS system , 1987 .

[68]  Yong Yang,et al.  In Situ Electrochemical XAFS Studies on an Iron Fluoride High-Capacity Cathode Material for Rechargeable Lithium Batteries , 2013 .

[69]  G. Vankó,et al.  Multiple-element spectrometer for non-resonant inelastic X-ray spectroscopy of electronic excitations. , 2009, Journal of synchrotron radiation.

[70]  A. Frenkel,et al.  Characterization of Metal-Oxide Catalysts in Operando Conditions by Combining X-ray Absorption and Raman Spectroscopies in the Same Experiment , 2013, Topics in Catalysis.

[71]  J. Grunwaldt,et al.  A versatile in situ spectroscopic cell for fluorescence/transmission EXAFS and X-ray diffraction of heterogeneous catalysts in gas and liquid phase. , 2007, Journal of synchrotron radiation.

[72]  Christopher S. Johnson,et al.  Li2O Removal from Li5FeO4: A Cathode Precursor for Lithium-Ion Batteries† , 2010 .

[73]  J. Cruz-Reyes,et al.  HDS of DBT with Molybdenum Disulfide Catalysts Prepared by In Situ Decomposition of Alkyltrimethylammonium Thiomolybdates , 2011 .

[74]  Frank Neese,et al.  Probing valence orbital composition with iron Kbeta X-ray emission spectroscopy. , 2010, Journal of the American Chemical Society.

[75]  E. Cairns,et al.  In situ x-ray absorption spectroscopic study of the Li[Ni1∕3Co1∕3Mn1∕3]O2 cathode material , 2005 .

[76]  N. J. Shevchik,et al.  Tunable laboratory extended x-ray absorption fine structure system. , 1980, The Review of scientific instruments.

[77]  M. Balasubramanian,et al.  Designing High-Capacity, Lithium-Ion Cathodes Using X-ray Absorption Spectroscopy , 2011 .

[78]  Meng Jian-wei,et al.  Variation of Ti Valence with Lithium Content in Lithiated/Delithiated Li4Ti5O12 Studied by X-Ray Absorption near the Edge Structure , 2013 .

[79]  M. Yoshio,et al.  In Situ XAFS Analysis of Li(Mn, M)2O4 (M=Cr, Co, Ni) 5V Cathode Materials for Lithium-Ion Secondary Batteries , 2001 .

[80]  Q. Xiao,et al.  A new approach for in-laboratory XAFS equipment. , 1999, Journal of synchrotron radiation.

[81]  E. Cairns,et al.  In situ X-ray absorption spectroscopy : A probe of cathode materials for Li-ion cells , 2006 .

[82]  J. Grunwaldt,et al.  Combining XRD and EXAFS with on-Line Catalytic Studies for in situ Characterization of Catalysts , 2002 .

[83]  J. Quintana,et al.  A plastic miniature x-ray emission spectrometer based on the cylindrical von Hamos geometry. , 2012, The Review of scientific instruments.

[84]  H. Sakaebe,et al.  Structure and Electrochemical Properties of LiFe x Mn2 − x O 4 ( 0 ⩽ x ⩽ 0.5 ) Spinel as 5 V Electrode Material for Lithium Batteries , 2001 .

[85]  K. Tohji,et al.  Development of a Laboratory EXAFS Facility , 1983 .

[86]  Edward A. Stern,et al.  Extended x-ray-absorption fine-structure technique. III. Determination of physical parameters , 1975 .

[87]  Uwe Bergmann,et al.  Direct detection of oxygen ligation to the Mn(4)Ca cluster of photosystem II by X-ray emission spectroscopy. , 2009, Angewandte Chemie.

[88]  Sébastien Boutet,et al.  Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode , 2012, Proceedings of the National Academy of Sciences.

[89]  G. Knapp,et al.  Development of a laboratory EXAFS facility. , 1978, The Review of scientific instruments.

[90]  A. Dent Development of Time-Resolved XAFS Instrumentation for Quick EXAFS and Energy-Dispersive EXAFS Measurements on Catalyst Systems , 2002 .

[91]  C. T. Chantler,et al.  The analysis of x-ray absorption fine structure: beam-line independent interpretation , 2007 .

[92]  Akio Kotani,et al.  Core Level Spectroscopy of Solids , 2008 .

[93]  M. Tabuchi,et al.  XAFS study of LiCo1-xFexO2 cathode for rechargeable lithium battery by laboratory XAFS spectrometer. , 2001, Journal of synchrotron radiation.

[94]  Edward A. Stern,et al.  New Technique for Investigating Noncrystalline Structures: Fourier Analysis of the Extended X-Ray—Absorption Fine Structure , 1971 .

[95]  Alexander P. Shevelko,et al.  Compact focusing von Hamos spectrometer for quantitative x-ray spectroscopy , 2002 .

[96]  R. Nuzzo,et al.  Critical review: Effects of complex interactions on structure and dynamics of supported metal catalysts , 2014 .

[97]  J. Colin,et al.  In situ investigations of a Li-rich Mn–Ni layered oxide for Li-ion batteries , 2012 .

[98]  H. Sugie,et al.  Carbon nanotubes as electron source in an x-ray tube , 2001 .

[99]  K. Sakurai,et al.  Recent performance of laboratory-scale X-ray absorption fine structure instruments , 1999 .

[100]  A. Shukla,et al.  High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline. , 2012, The Review of scientific instruments.

[101]  Phl Peter Notten,et al.  In situ X-ray absorption spectroscopy of germanium evaporated thin film electrodes , 2010 .

[102]  Y. Inada,et al.  Laboratory Stopped-Flow XAFS Apparatus. Structure Determination of the Short-Lived Peroxochromium Intermediate Formed during Reduction Process of Chromate(VI) Ion by Hydrogen Peroxide , 1997 .

[103]  Devon R. Mortensen,et al.  X-ray absorption measurements on nickel cathode of sodium-beta alumina batteries: Fe-Ni-Cl chemical associations , 2014 .

[104]  Winfried Schulke,et al.  Electron dynamics by inelastic X-ray scattering , 2007 .

[105]  G. Sankar,et al.  The role of synchrotron-based studies in the elucidation and design of active sites in titanium-silica epoxidation catalysts. , 2001, Accounts of chemical research.

[106]  Ruben Khachatryan,et al.  Spherical analyzers and monochromators for resonant inelastic hard X-ray scattering: a compilation of crystals and reflections , 2012, Journal of synchrotron radiation.

[107]  Min Kyu Lee,et al.  Laboratory vacuum spectrometer for the soft x-ray region , 2008 .

[108]  J. Katzer,et al.  Laboratory EXAFS spectrometer for catalyst studies , 1982 .

[109]  Uwe Bergmann,et al.  X-ray emission spectroscopy , 2009, Photosynthesis Research.

[110]  Xingtai Zhou,et al.  The Structure–Property Investigation of Bi1–xCexFeO3 (x = 0, 0.05)–Li Battery: In Situ XRD and XANES Studies , 2012 .

[111]  Anatoly I. Frenkel,et al.  Synchrotron Techniques for In Situ Catalytic Studies: Capabilities, Challenges, and Opportunities , 2012 .

[112]  C. T. Chantler,et al.  X-ray bandwidth : Determination by on-edge absorption and effect on various absorption experiments , 2004 .

[113]  J. Jaud,et al.  A LABORATORY EXAFS SPECTROMETER IN TRANSMISSION DISPERSIVE MODE , 1994 .

[114]  J. Hoszowska,et al.  HIGH-RESOLUTION VON HAMOS CRYSTAL X-RAY SPECTROMETER , 1996 .

[115]  Otto Zhou,et al.  Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode , 2002 .

[116]  Yoshiyasu Saito,et al.  X-ray absorption near-edge structure study on positive electrodes of degraded lithium-ion battery , 2011 .

[117]  M. Bauer,et al.  Valence-to-core X-ray emission spectroscopy of iron-carbonyl complexes: implications for the examination of catalytic intermediates. , 2013, Chemistry.

[118]  D. Koningsberger Laboratory EXAFS Facilities , 1988 .

[119]  C. Pollock,et al.  Valence-to-core X-ray emission spectroscopy: a sensitive probe of the nature of a bound ligand. , 2011, Journal of the American Chemical Society.

[120]  Y. Ukyo,et al.  In situ XAFS and micro-XAFS studies on LiNi0.8Co0.15Al0.05O2 cathode material for lithium-ion batteries , 2006 .

[121]  R. Torresi,et al.  XANES study of polyaniline–V2O5 and sulfonated polyaniline–V2O5 nanocomposites , 2002 .

[122]  Jyhfu Lee,et al.  Valence change by in situ XAS in surface modified LiMn2O4 for Li-ion battery , 2006 .

[123]  A. Frenkel Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. , 2012, Chemical Society reviews.

[124]  Stéphanie Belin,et al.  An Electrochemical Cell for Operando Study of Lithium Batteries Using Synchrotron Radiation , 2010 .

[125]  M. Morcrette,et al.  Effect of iron on delithiation in LixCo1−yFeyO2. Part 2:in-situ XANES and EXAFS upon electrochemical cycling , 2004 .