The exotic chemical composition of the Sagittarius dwarf Spheroidal galaxy

Context. The Sagittarius dwarf spheroidal galaxy is the nearest neighbor of the Milky Way. Moving along a short period quasi-polar orbit within the Halo, it is being destroyed by the tidal interaction with our Galaxy, losing its stellar content along a huge stellar stream. Aims. We study the detailed chemical composition of 12 giant stars in the Sagittarius dwarf Spheroidal main body, together with 5 more in the associated globular cluster Terzan 7, by means of high resolution VLT-UVES spectra. Methods. Abundances are derived for up to 21 elements from O to Nd, by fitting lines EW or line profiles against ATLAS 9 model atmospheres and SYNTHE spectral syntheses calculated ad-hoc. Temperatures are derived from $(V-I)_0$ or $(B-V)_0$ colors and gravities from $\ion{Fe}{i}$ – $\ion{Fe}{ii}$ ionization equilibrium. Results. The metallicity of the observed stars is between [Fe/H] = -0.9 and 0. We detected a highly peculiar “chemical signature”, with undersolar α elements, Na, Al, Sc, V, Co, Ni, Cu, and Zn, among others, and overabundant La, Ce, and Nd. Many of these abundance ratios (in particular light-odd elements and iron peak ones) are strongly at odds with what is observed within the Milky Way, so they may be a very useful tool for recognizing populations originating within the Sagittarius dwarf. This can be clearly seen in the case of the globular Palomar 12, which is believed to have been stripped from Sagittarius: the cluster shows precisely the same chemical “oddities”, thus finally confirming its extragalactic origin.

[1]  F. Hoyle,et al.  Synthesis of the Elements in Stars , 1957 .

[2]  Santiago Arribas,et al.  The effective temperature scale of giant stars (F0–K5) - II. Empirical calibration of versus colours and [Fe/H] , 1999 .

[3]  Abundances for metal-poor stars with accurate parallaxes - II. $\alpha-$elements in the halo , 2003, astro-ph/0305358.

[4]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[5]  S. Johansson,et al.  Experimental [CLC][ITAL]f[/ITAL][/CLC]-Value and Isotopic Structure for the N[CLC]i[/CLC] [CSC]i[/CSC] Line Blended with [O [CSC]i[/CSC]] at 6300 Å , 2003 .

[6]  The distance to the Sagittarius dwarf spheroidal galaxy from the red giant branch tip , 2004, astro-ph/0406350.

[7]  P. Bonifacio,et al.  Family ties: Abundances in Terzan 7, a Sgr dSph globular cluster , 2005 .

[8]  M. F. Skrutskie,et al.  A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms , 2003, astro-ph/0304198.

[9]  A. McWilliam,et al.  The Unusual Abundance of Copper in the Sagittarius Dwarf Spheroidal Galaxy and Implications for the Origin of ω Centauri , 2005 .

[10]  Building up the stellar halo of the Galaxy , 1999, astro-ph/9901102.

[11]  Italy.,et al.  The predicted metallicity distribution of stars in dwarf spheroidal galaxies , 2004, astro-ph/0403602.

[12]  M. Livio,et al.  The Local Group as an astrophysical laboratory: The Local Group as an Astrophysical Laboratory , 2006 .

[13]  C. Cowley,et al.  Moderately accurate oscillator strengths from NBS intensities – II , 1983 .

[14]  A. Bielski A critical survey of atomic transition probabilities for CuI , 1975 .

[15]  Abundance Patterns in the Draco, Sextans, and Ursa Minor Dwarf Spheroidal Galaxies , 2000, astro-ph/0009505.

[16]  Rodrigo Ibata,et al.  Sagittarius: the nearest dwarf galaxy , 1995 .

[17]  Italy.,et al.  The evolution of barium and europium in local dwarf spheroidal galaxies , 2005, astro-ph/0510142.

[18]  F. Castelli,et al.  Round Table Summary: Problems in Modelling Stellar Atmospheres , 2003 .

[19]  Judith Cohen,et al.  Palomar 12 as a Part of the Sagittarius Stream: The Evidence from Abundance Ratios , 2003, astro-ph/0311187.

[20]  Brazil.,et al.  Detailed Chemical Evolution of Carina and Sagittarius Dwarf Spheroidal Galaxies , 2006, astro-ph/0603577.

[21]  E. Tolstoy,et al.  Stellar Chemical Signatures and Hierarchical Galaxy Formation , 2004, astro-ph/0406120.

[22]  G. Smith,et al.  Oscillator strengths and collisional damping parameters for lines of neutral calcium , 1981 .

[23]  D. Zucker,et al.  High-Resolution CCD Spectra of Stars in Globular Clusters.IX.The , 1997 .

[24]  M. Irwin,et al.  A dwarf satellite galaxy in Sagittarius , 1994, Nature.

[25]  Fnal,et al.  The Field of Streams: Sagittarius and its Siblings , 2006, astro-ph/0605025.

[26]  F. Ferraro,et al.  The central density cusp of the Sagittarius dwarf spheroidal galaxy , 2004, astro-ph/0411107.

[27]  Wolfgang L. Wiese,et al.  Atomic transition probabilities for scandium and titanium (A critical data compilation of allowed lines) , 1975 .

[28]  J. Lawler,et al.  Experimental Radiative Lifetimes, Branching Fractions, and Oscillator Strengths for La II and a New Determination of the Solar Lanthanum Abundance , 2001 .

[29]  E. A. Den Hartog,et al.  Improved Laboratory Transition Probabilities for Nd II and Application to the Neodymium Abundances of the Sun and Three Metal-poor Stars , 2003 .

[30]  P. Storey,et al.  Theoretical values for the [O iii] 5007/4959 line-intensity ratio and homologous cases , 2000 .

[31]  L. Girardi,et al.  Theoretical isochrones in several photometric systems I. Johnson-Cousins-Glass, HST/WFPC2, HST/NICMOS, Washington, and ESO Imaging Survey filter sets , 2002, astro-ph/0205080.

[32]  F. Ferraro,et al.  First Detection of the Red Giant Branch Bump in the Sagittarius Dwarf Spheroidal Galaxy , 2002 .

[33]  P. Hannaford,et al.  Oscillator strengths for Y I and Y II and the solar abundance of yttrium. , 1982 .

[34]  C. Nordling,et al.  Lifetime Measurements in La II with the Beam-Laser Method , 1977 .

[35]  Italy.,et al.  Chemical evolution of dwarf spheroidal and blue compact galaxies , 2003, astro-ph/0306463.

[36]  European Southern Observatory,et al.  The Sgr dSph hosts a metal-rich population , 2004 .

[37]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[38]  Doug Geisler,et al.  Elemental Abundances of Three Red Giants in Terzan 7, a Globular Cluster Associated with the Sagittarius Galaxy , 2004 .

[39]  Jeffrey D. Crane,et al.  A 2MASS ALL-SKY VIEW OF THE SAGITTARIUS DWARF GALAXY. V. VARIATION OF THE METALLICITY DISTRIBUTION FUNCTION ALONG THE SAGITTARIUS STREAM , 2007 .

[40]  Gerard Gilmore,et al.  The Kinematics, Orbit, and Survival of the Sagittarius Dwarf Spheroidal Galaxy , 1997 .

[41]  Guillermo Gonzalez,et al.  Elemental Abundances in Five Stars in M54, A Globular Cluster Associated with the Sagittarius Galaxy , 1999 .

[42]  M. Shetrone,et al.  VLT/UVES Abundances in Four Nearby Dwarf Spheroidal Galaxies. I. Nucleosynthesis and Abundance Ratios , 2002, astro-ph/0211167.

[43]  S. Arribas,et al.  Erratum The effective temperature scale of giant stars (F0-K5) - II. Empirical calibration of $T_{\mathsf {eff}}$ versus colours and [Fe/H] , 2001 .

[44]  Santiago,et al.  The Ital-FLAMES survey of the Sagittarius dwarf spheroidal galaxy - I. Chemical abundances of bright RGB stars , 2005, astro-ph/0506622.

[45]  M. Irwin,et al.  A Comparison of Elemental Abundance Ratios in Globular Clusters, Field Stars, and Dwarf Spheroidal Galaxies , 2005, astro-ph/0506238.

[46]  R. Rich,et al.  Constraints on the Origin of Manganese from the Composition of the Sagittarius Dwarf Spheroidal Galaxy and the Galactic Bulge , 2003 .

[47]  Ata Sarajedini,et al.  Photometry of the Globular Cluster M54 and the Sagittarius Dwarf Galaxy: The Age-Metallicity Relation , 2000 .

[48]  The chemical compositions of Galactic disc F and G dwarfs , 2002, astro-ph/0211551.

[49]  E. Observatory,et al.  Sulphur abundances in Terzan 7 , 2005, astro-ph/0504463.