Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis
暂无分享,去创建一个
C. L. Farrow | S. J. L. Billinge | M. Kanatzidis | P. Juhás | S. Billinge | M. G. Kanatzidis | E. Bozin | A. S. Masadeh | E. Bozin | G. Paglia | P. Juhas | A. Karkamkar | A. Karkamkar | A. Masadeh | C. Farrow | G. Paglia | Abhijeet J. Karkamkar
[1] S J L Billinge,et al. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.
[2] X. Tan,et al. Size-induced strain and stiffness of nanocrystals , 2006 .
[3] Z. Kaszkur. Test of applicability of some powder diffraction tools to nanocrystals , 2006 .
[4] W. Punch,et al. Ab initio determination of solid-state nanostructure , 2006, Nature.
[5] Y. S. Zhang,et al. Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.
[6] T. Taguchi,et al. Finite size effects of nanoparticles on the atomic pair distribution functions. , 2005, Acta crystallographica. Section A, Foundations of crystallography.
[7] S. Conradson,et al. Pair distribution function and structure factor of spherical particles , 2005, cond-mat/0510679.
[8] C. Kumpf,et al. Structure determination of CdS and ZnS nanoparticles: direct modeling of synchrotron-radiation diffraction data. , 2005, The Journal of chemical physics.
[9] Yang Ren,et al. Structure of gold nanoparticles suspended in water studied by x-ray diffraction and computer simulations , 2005 .
[10] Yang Ren,et al. Structure of nanocrystalline GaN from X-ray diffraction, Rietveld and atomic pair distribution function analyses , 2005 .
[11] R. K. Pandey,et al. Self-assembled nanocrystalline CdSe thin films , 2005 .
[12] V. Petkov,et al. Atomic-scale structure of nanocrystalline ZrO 2 prepared by high-energy ball milling , 2005 .
[13] Xiaobo Chen,et al. Investigation of the crystallization process in 2 nm CdSe quantum dots. , 2005, Journal of the American Chemical Society.
[14] R. Neder,et al. Structure of nanoparticles from powder diffraction data using the pair distribution function , 2005 .
[15] Andreas Kornowski,et al. Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. , 2005, Langmuir : the ACS journal of surfaces and colloids.
[16] M. Terrones,et al. Direct observation of the structure of gold nanoparticles by total scattering powder neutron diffraction , 2004 .
[17] Simon J. L. Billinge,et al. PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data , 2004 .
[18] Feng Huang,et al. Nanoparticles: Strained and Stiff , 2004, Science.
[19] S. Billinge,et al. Determination of standard uncertainties in fits to pair distribution functions. , 2004, Acta crystallographica. Section A, Foundations of crystallography.
[20] Simon J. L. Billinge,et al. Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .
[21] J. Banfield,et al. Water-driven structure transformation in nanoparticles at room temperature , 2003, Nature.
[22] J. Hanson,et al. Rapid acquisition pair distribution function (RA-PDF) analysis. , 2003, cond-mat/0304638.
[23] A. P. Alivisatos,et al. Origin and scaling of the permanent dipole moment in CdSe nanorods. , 2003, Physical review letters.
[24] S. Billinge,et al. Lattice dynamics and correlated atomic motion from the atomic pair distribution function , 2002, cond-mat/0209603.
[25] A. Cheetham,et al. Building a high resolution total scattering powder diffractometer – upgrade of NPD at MLNSC , 2002 .
[26] M. Kanatzidis,et al. Structure of V(2)O(5)*nH(2)O xerogel solved by the atomic pair distribution function technique. , 2002, Journal of the American Chemical Society.
[27] S. Gierlotka,et al. Diffraction studies of nanocrystals: Theory and experiment , 2002 .
[28] Phan T. Tran,et al. Use of Luminescent CdSe–ZnS Nanocrystal Bioconjugates in Quantum Dot‐Based Nanosensors , 2002 .
[29] M. El-Sayed,et al. Observation of Large Changes in the Band Gap Absorption Energy of Small CdSe Nanoparticles Induced by the Adsorption of a Strong Hole Acceptor , 2001 .
[30] Xiaogang Peng,et al. Alternative Routes toward High Quality CdSe Nanocrystals , 2001 .
[31] Martin T. Dove,et al. Dynamic structural disorder in cristobalite: neutron total scattering measurement and reverse Monte Carlo modelling , 2001 .
[32] Brazil,et al. Local structure of In{sub x}Ga{sub 1-x}As semiconductor alloys by high-energy synchrotron x-ray diffraction , 2000, cond-mat/0008079.
[33] M. Kanatzidis,et al. Application of Atomic Pair Distribution Function Analysis to Materials with Intrinsic Disorder. Three-Dimensional Structure of Exfoliated-Restacked WS2: Not Just a Random Turbostratic Assembly of Layers , 2000 .
[34] A. Alivisatos,et al. Erratum: Shape Change as an Indicator of Mechanism in the High-Pressure Structural Transformations of CdSe Nanocrystals [Phys. Rev. Lett. 84, 923 (2000)] , 2000 .
[35] D. Sarma,et al. Size-Selected Zinc Sulfide Nanocrystallites: Synthesis, Structure, and Optical Studies , 2000 .
[36] H. C. Foley,et al. Local structure of nanoporous carbons , 1999 .
[37] M. Thorpe,et al. High Real-Space Resolution Measurement of the Local Structure of Ga{sub 1-x}In{sub x}As Using X-Ray Diffraction , 1999, cond-mat/9906099.
[38] Simon J. L. Billinge,et al. PDFFIT, a program for full profile structural refinement of the atomic pair distribution function , 1999 .
[39] T. Proffen,et al. Measuring Correlated Atomic Motion Using X-ray Diffraction , 1999 .
[40] D. Balding,et al. HLA Sequence Polymorphism and the Origin of Humans , 2006 .
[41] Xiaogang Peng,et al. Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .
[42] A. C. Carter,et al. Surface structure of cadmium selenide nanocrystallites , 1997 .
[43] T. Proffen,et al. DISCUS: a program for diffuse scattering and defect‐structure simulation , 1997 .
[44] A. P. Hammersley,et al. Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .
[45] Cherie R. Kagan,et al. Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices , 1995, Science.
[46] A. Alivisatos,et al. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.
[47] S. Tolbert,et al. Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals , 1994, Science.
[48] M. Bawendi,et al. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .
[49] Ying Wang,et al. Crystal Structure and Optical Properties of Cd32S14(SC6H5)36. DMF4, a Cluster with a 15 Angstrom CdS Core , 1993, Science.
[50] M. Bawendi,et al. EXAFS studies of Cd chalcogenide nanocrystals , 1992 .
[51] Brian H. Toby,et al. Accuracy of pair distribution function analysis applied to crystalline and non-crystalline materials , 1992 .
[52] M. Bawendi,et al. Structure of capped cadmium selenide clusters by EXAFS , 1991 .
[53] M. Steigerwald,et al. X‐ray structural characterization of larger CdSe semiconductor clusters , 1989 .
[54] Hodes,et al. Three-dimensional quantum-size effect in chemically deposited cadmium selenide films. , 1987, Physical review. B, Condensed matter.
[55] I. Kikuma,et al. Direct observation of the 3C-2H transformation in ZnSe by high-temperature x-ray diffraction , 1985 .
[56] H. Rietveld. A profile refinement method for nuclear and magnetic structures , 1969 .
[57] B. Borie. X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. , 1965 .
[58] P. Debye,et al. Zerstreuung von Röntgenstrahlen , 1915 .