Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis

The size-dependent structure of CdSe nanoparticles, with diameters ranging from $2\phantom{\rule{0.3em}{0ex}}\text{to}\phantom{\rule{0.3em}{0ex}}4\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$, has been studied using the atomic pair distribution function (PDF) method. The core structure of the measured CdSe nanoparticles can be described in terms of the wurtzite atomic structure with extensive stacking faults. The density of faults in the nanoparticles is $\ensuremath{\sim}50%$. The diameter of the core region was extracted directly from the PDF data and is in good agreement with the diameter obtained from standard characterization methods, suggesting that there is little surface amorphous region. A compressive strain was measured in the Cd--Se bond length that increases with decreasing particle size being 0.5% with respect to bulk CdSe for the $2\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$ diameter particles. This study demonstrates the size-dependent quantitative structural information that can be obtained even from very small nanoparticles using the PDF approach.

[1]  S J L Billinge,et al.  PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  X. Tan,et al.  Size-induced strain and stiffness of nanocrystals , 2006 .

[3]  Z. Kaszkur Test of applicability of some powder diffraction tools to nanocrystals , 2006 .

[4]  W. Punch,et al.  Ab initio determination of solid-state nanostructure , 2006, Nature.

[5]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[6]  T. Taguchi,et al.  Finite size effects of nanoparticles on the atomic pair distribution functions. , 2005, Acta crystallographica. Section A, Foundations of crystallography.

[7]  S. Conradson,et al.  Pair distribution function and structure factor of spherical particles , 2005, cond-mat/0510679.

[8]  C. Kumpf,et al.  Structure determination of CdS and ZnS nanoparticles: direct modeling of synchrotron-radiation diffraction data. , 2005, The Journal of chemical physics.

[9]  Yang Ren,et al.  Structure of gold nanoparticles suspended in water studied by x-ray diffraction and computer simulations , 2005 .

[10]  Yang Ren,et al.  Structure of nanocrystalline GaN from X-ray diffraction, Rietveld and atomic pair distribution function analyses , 2005 .

[11]  R. K. Pandey,et al.  Self-assembled nanocrystalline CdSe thin films , 2005 .

[12]  V. Petkov,et al.  Atomic-scale structure of nanocrystalline ZrO 2 prepared by high-energy ball milling , 2005 .

[13]  Xiaobo Chen,et al.  Investigation of the crystallization process in 2 nm CdSe quantum dots. , 2005, Journal of the American Chemical Society.

[14]  R. Neder,et al.  Structure of nanoparticles from powder diffraction data using the pair distribution function , 2005 .

[15]  Andreas Kornowski,et al.  Determination of nanocrystal sizes: a comparison of TEM, SAXS, and XRD studies of highly monodisperse CoPt3 particles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[16]  M. Terrones,et al.  Direct observation of the structure of gold nanoparticles by total scattering powder neutron diffraction , 2004 .

[17]  Simon J. L. Billinge,et al.  PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data , 2004 .

[18]  Feng Huang,et al.  Nanoparticles: Strained and Stiff , 2004, Science.

[19]  S. Billinge,et al.  Determination of standard uncertainties in fits to pair distribution functions. , 2004, Acta crystallographica. Section A, Foundations of crystallography.

[20]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[21]  J. Banfield,et al.  Water-driven structure transformation in nanoparticles at room temperature , 2003, Nature.

[22]  J. Hanson,et al.  Rapid acquisition pair distribution function (RA-PDF) analysis. , 2003, cond-mat/0304638.

[23]  A. P. Alivisatos,et al.  Origin and scaling of the permanent dipole moment in CdSe nanorods. , 2003, Physical review letters.

[24]  S. Billinge,et al.  Lattice dynamics and correlated atomic motion from the atomic pair distribution function , 2002, cond-mat/0209603.

[25]  A. Cheetham,et al.  Building a high resolution total scattering powder diffractometer – upgrade of NPD at MLNSC , 2002 .

[26]  M. Kanatzidis,et al.  Structure of V(2)O(5)*nH(2)O xerogel solved by the atomic pair distribution function technique. , 2002, Journal of the American Chemical Society.

[27]  S. Gierlotka,et al.  Diffraction studies of nanocrystals: Theory and experiment , 2002 .

[28]  Phan T. Tran,et al.  Use of Luminescent CdSe–ZnS Nanocrystal Bioconjugates in Quantum Dot‐Based Nanosensors , 2002 .

[29]  M. El-Sayed,et al.  Observation of Large Changes in the Band Gap Absorption Energy of Small CdSe Nanoparticles Induced by the Adsorption of a Strong Hole Acceptor , 2001 .

[30]  Xiaogang Peng,et al.  Alternative Routes toward High Quality CdSe Nanocrystals , 2001 .

[31]  Martin T. Dove,et al.  Dynamic structural disorder in cristobalite: neutron total scattering measurement and reverse Monte Carlo modelling , 2001 .

[32]  Brazil,et al.  Local structure of In{sub x}Ga{sub 1-x}As semiconductor alloys by high-energy synchrotron x-ray diffraction , 2000, cond-mat/0008079.

[33]  M. Kanatzidis,et al.  Application of Atomic Pair Distribution Function Analysis to Materials with Intrinsic Disorder. Three-Dimensional Structure of Exfoliated-Restacked WS2: Not Just a Random Turbostratic Assembly of Layers , 2000 .

[34]  A. Alivisatos,et al.  Erratum: Shape Change as an Indicator of Mechanism in the High-Pressure Structural Transformations of CdSe Nanocrystals [Phys. Rev. Lett. 84, 923 (2000)] , 2000 .

[35]  D. Sarma,et al.  Size-Selected Zinc Sulfide Nanocrystallites: Synthesis, Structure, and Optical Studies , 2000 .

[36]  H. C. Foley,et al.  Local structure of nanoporous carbons , 1999 .

[37]  M. Thorpe,et al.  High Real-Space Resolution Measurement of the Local Structure of Ga{sub 1-x}In{sub x}As Using X-Ray Diffraction , 1999, cond-mat/9906099.

[38]  Simon J. L. Billinge,et al.  PDFFIT, a program for full profile structural refinement of the atomic pair distribution function , 1999 .

[39]  T. Proffen,et al.  Measuring Correlated Atomic Motion Using X-ray Diffraction , 1999 .

[40]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[41]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[42]  A. C. Carter,et al.  Surface structure of cadmium selenide nanocrystallites , 1997 .

[43]  T. Proffen,et al.  DISCUS: a program for diffuse scattering and defect‐structure simulation , 1997 .

[44]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[45]  Cherie R. Kagan,et al.  Self-Organization of CdSe Nanocrystallites into Three-Dimensional Quantum Dot Superlattices , 1995, Science.

[46]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[47]  S. Tolbert,et al.  Size Dependence of a First Order Solid-Solid Phase Transition: The Wurtzite to Rock Salt Transformation in CdSe Nanocrystals , 1994, Science.

[48]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[49]  Ying Wang,et al.  Crystal Structure and Optical Properties of Cd32S14(SC6H5)36. DMF4, a Cluster with a 15 Angstrom CdS Core , 1993, Science.

[50]  M. Bawendi,et al.  EXAFS studies of Cd chalcogenide nanocrystals , 1992 .

[51]  Brian H. Toby,et al.  Accuracy of pair distribution function analysis applied to crystalline and non-crystalline materials , 1992 .

[52]  M. Bawendi,et al.  Structure of capped cadmium selenide clusters by EXAFS , 1991 .

[53]  M. Steigerwald,et al.  X‐ray structural characterization of larger CdSe semiconductor clusters , 1989 .

[54]  Hodes,et al.  Three-dimensional quantum-size effect in chemically deposited cadmium selenide films. , 1987, Physical review. B, Condensed matter.

[55]  I. Kikuma,et al.  Direct observation of the 3C-2H transformation in ZnSe by high-temperature x-ray diffraction , 1985 .

[56]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[57]  B. Borie X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. , 1965 .

[58]  P. Debye,et al.  Zerstreuung von Röntgenstrahlen , 1915 .