Spatio-temporal clustering for non-recurrent traffic congestion detection on urban road networks

[1]  P. Moran The Interpretation of Statistical Maps , 1948 .

[2]  Henry K. Evans,et al.  Traffic engineering handbook , 1950 .

[3]  J. G. Wardrop,et al.  Some Theoretical Aspects of Road Traffic Research , 1952 .

[4]  R. Geary,et al.  The Contiguity Ratio and Statistical Mapping , 1954 .

[5]  M. Choynowski Maps Based on Probabilities , 1959 .

[6]  E G Knox,et al.  The Detection of Space‐Time Interactions , 1964 .

[7]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[8]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[9]  Anil K. Jain,et al.  Clustering techniques: The user's dilemma , 1976, Pattern Recognit..

[10]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[11]  Abishai Polus,et al.  A study of travel time and reliability on arterial routes , 1979 .

[12]  Samir A. Ahmed,et al.  Time series models for freeway incident detection , 1980 .

[13]  Edward A. McBean,et al.  VARIABILITY OF INDIVIDUAL TRAVEL TIME COMPONENTS , 1984 .

[14]  J. Ord,et al.  Spatial Processes: Models and Applications , 1984 .

[15]  Y. She Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods , 1985 .

[16]  Martin Charlton,et al.  A Mark 1 Geographical Analysis Machine for the automated analysis of point data sets , 1987, Int. J. Geogr. Inf. Sci..

[17]  A. Craft,et al.  INVESTIGATION OF LEUKAEMIA CLUSTERS BY USE OF A GEOGRAPHICAL ANALYSIS MACHINE , 1988, The Lancet.

[18]  L. Madden,et al.  Analysis of epidemics using spatio-temporal autocorrelation , 1988 .

[19]  Lee D. Han,et al.  AUTOMATIC DETECTION OF TRAFFIC OPERATIONAL PROBLEMS ON URBAN ARTERIALS , 1989 .

[20]  Evangelos Triantaphyllou,et al.  An examination of the effectiveness of multi-dimensional decision-making methods: A decision-making paradox , 1989, Decis. Support Syst..

[21]  Fred L. Hall,et al.  Catastrophe theory and patterns in 30 second freeway traffic data, implications for incident detection , 1989 .

[22]  Julian Besag,et al.  The Detection of Clusters in Rare Diseases , 1991 .

[23]  Richard C. Dubes,et al.  Cluster Analysis and Related Issues , 1993, Handbook of Pattern Recognition and Computer Vision.

[24]  Yorgos J. Stephanedes,et al.  Application of Filtering Techniques for Incident Detection , 1993 .

[25]  Kerner,et al.  Structure and parameters of clusters in traffic flow. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  M Kulldorff,et al.  Spatial disease clusters: detection and inference. , 1995, Statistics in medicine.

[27]  Kay W. Axhausen,et al.  The potential of information provision in a simulated road transport network with non-recurrent congestion , 1995 .

[28]  Ruey Long Cheu,et al.  Automated detection of lane-blocking freeway incidents using artificial neural networks , 1995 .

[29]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[30]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[31]  Karthik K. Srinivasan,et al.  Determination of Number of Probe Vehicles Required for Reliable Travel Time Measurement in Urban Network , 1996 .

[32]  W. Loh,et al.  A comparison of tests of equality of variances , 1996 .

[33]  A. Ash Incident detection in urban areas controlled by SCOOT , 1997 .

[34]  Fred L. Hall,et al.  Incident Detection on an Arterial Roadway , 1997 .

[35]  William L Eisele,et al.  TRAVEL TIME DATA COLLECTION HANDBOOK , 1998 .

[36]  Stelios H. Zanakis,et al.  Multi-attribute decision making: A simulation comparison of select methods , 1998, Eur. J. Oper. Res..

[37]  Victor Solo,et al.  Choosing the optimal neighbourhood size in optical flow problems with errors-in-variables modelling , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[38]  Gérard Govaert,et al.  Convergence of an EM-type algorithm for spatial clustering , 1998, Pattern Recognit. Lett..

[39]  W. F. Athas,et al.  Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. , 1998, American journal of public health.

[40]  Asdrubal Garcia-Ortiz,et al.  Traffic incident detection: Sensors and algorithms , 1998 .

[41]  Brunilde Sansò,et al.  Performability of a Congested Urban Transportation Network When Accident Information is Available , 1999, Transp. Sci..

[42]  Kaan Ozbay,et al.  INCIDENT MANAGEMENT IN INTELLIGENT TRANSPORTATION SYSTEMS , 1999 .

[43]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[44]  Penina Orenstein,et al.  SIMPLE MODELS FOR TRAFFIC JAMS AND CONGESTION CONTROL , 1999 .

[45]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[46]  Jaideep Srivastava,et al.  Event detection from time series data , 1999, KDD '99.

[47]  Haitham Al-Deek,et al.  Travel-Time Prediction for Freeway Corridors , 1999 .

[48]  Loren Bloomberg,et al.  Comparison of VISSIM and CORSIM Traffic Simulation Models on a Congested Network , 2000 .

[49]  Peter J. Bickel,et al.  A New Methodology for Evaluating Incident Detection Algorithms , 2000 .

[50]  Helbing,et al.  Congested traffic states in empirical observations and microscopic simulations , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[51]  Claire Cardie,et al.  Proceedings of the Eighteenth International Conference on Machine Learning, 2001, p. 577–584. Constrained K-means Clustering with Background Knowledge , 2022 .

[52]  M. Kulldor,et al.  Prospective time-periodic geographical disease surveillance using a scan statistic , 2001 .

[53]  Anthony K. H. Tung,et al.  Spatial clustering in the presence of obstacles , 2001, Proceedings 17th International Conference on Data Engineering.

[54]  Peter T. Martin,et al.  INCIDENT DETECTION ALGORITHM EVALUATION , 2001 .

[55]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[56]  Shashi Shekhar,et al.  Detecting graph-based spatial outliers: algorithms and applications (a summary of results) , 2001, KDD '01.

[57]  Lawrence A. Klein,et al.  Sensor Technologies and Data Requirements for Its , 2001 .

[58]  Edward Chung,et al.  Characterization of incidents on an urban arterial road , 2001 .

[59]  D. Helbing Traffic and related self-driven many-particle systems , 2000, cond-mat/0012229.

[60]  R. Noland,et al.  Travel time variability: A review of theoretical and empirical issues , 2002 .

[61]  Luc Anselin,et al.  Under the hood , 2002 .

[62]  Hojjat Adeli,et al.  Comparison of fuzzy-wavelet radial basis function neural network freeway incident detection model with California algorithm , 2002 .

[63]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[64]  M E Hallenbeck,et al.  Measurement of Recurring Versus Non-Recurring Congestion: Technical Report , 2003 .

[65]  Alexander Skabardonis,et al.  Measuring Recurrent and Nonrecurrent Traffic Congestion , 2008 .

[66]  David B. Kidner,et al.  Higher-order interpolation of regular grid digital elevation models , 2003 .

[67]  Fang Yuan,et al.  INCIDENT DETECTION USING SUPPORT VECTOR MACHINES , 2003 .

[68]  M. Hallenbeck,et al.  MEASUREMENT OF RECURRING VERSUS NON-RECURRING CONGESTION , 2003 .

[69]  Baher Abdulhai,et al.  GAID: Genetic Adaptive Incident Detection for Freeways , 2003 .

[70]  Thanasis Hadzilacos,et al.  Advances in Spatial and Temporal Databases , 2015, Lecture Notes in Computer Science.

[71]  Chang-Tien Lu,et al.  Detecting spatial outliers with multiple attributes , 2003, Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence.

[72]  D. T. Lee,et al.  Travel-time prediction with support vector regression , 2004, IEEE Transactions on Intelligent Transportation Systems.

[73]  G. P. Patil,et al.  Upper level set scan statistic for detecting arbitrarily shaped hotspots , 2004, Environmental and Ecological Statistics.

[74]  Phil. Goodwin,et al.  The economic costs of road traffic congestion , 2004 .

[75]  Will Recker,et al.  Using Microscopic Simulation to Evaluate Potential Intelligent Transportation System Strategies Under Nonrecurrent Congestion , 2004 .

[76]  Sei-Wang Chen,et al.  Automatic license plate recognition , 2004, IEEE Transactions on Intelligent Transportation Systems.

[77]  Vijayalakshmi Atluri,et al.  Neighborhood based detection of anomalies in high dimensional spatio-temporal sensor datasets , 2004, SAC '04.

[78]  A J Graham,et al.  Spatial analysis for epidemiology. , 2004, Acta tropica.

[79]  B. Kerner The Physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory , 2004 .

[80]  Michalis Vazirgiannis,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. On Clustering Validation Techniques , 2022 .

[81]  Man Lung Yiu,et al.  Clustering objects on a spatial network , 2004, SIGMOD '04.

[82]  Alexander Skabardonis,et al.  Methodology for Measuring Recurrent and Nonrecurrent Traffic Congestion , 2004 .

[83]  A. Getis,et al.  Constructing the Spatial Weights Matrix Using a Local Statistic , 2004 .

[84]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[85]  T. Tango,et al.  International Journal of Health Geographics a Flexibly Shaped Spatial Scan Statistic for Detecting Clusters , 2005 .

[86]  M. Kulldorff,et al.  A Space–Time Permutation Scan Statistic for Disease Outbreak Detection , 2005, PLoS medicine.

[87]  Jyrki Kangas,et al.  Rank reversals in multi-criteria decision analysis with statistical modelling of ratio-scale pairwise comparisons , 2005, J. Oper. Res. Soc..

[88]  Baher Abdulhai,et al.  Comparison and Analysis Tool for Automatic Incident Detection , 2005 .

[89]  Pierre Goovaerts,et al.  Detection of temporal changes in the spatial distribution of cancer rates using local Moran’s I and geostatistically simulated spatial neutral models , 2005, J. Geogr. Syst..

[90]  S. Beevers,et al.  The impact of congestion charging on vehicle emissions in London , 2005 .

[91]  Pravin Varaiya What We've Learned About Highway Congestion , 2005 .

[92]  Emily Parkany,et al.  A COMPLETE REVIEW OF INCIDENT DETECTION ALGORITHMS & THEIR DEPLOYMENT: WHAT WORKS AND WHAT DOESN'T , 2005 .

[93]  Sanjay Chawla,et al.  SLOM: a new measure for local spatial outliers , 2006, Knowledge and Information Systems.

[94]  Ming-Syan Chen,et al.  Dual Clustering: Integrating Data Clustering over Optimization and Constraint Domains , 2005, IEEE Trans. Knowl. Data Eng..

[95]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[96]  John W. Polak,et al.  Overtaking Rule Method for the Cleaning of Matched License-Plate Data , 2006 .

[97]  M. Kulldorff,et al.  An elliptic spatial scan statistic , 2006, Statistics in medicine.

[98]  Shashi Shekhar,et al.  Sustained Emerging Spatio-Temporal Co-occurrence Pattern Mining: A Summary of Results , 2006, 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06).

[99]  Stephen A. Billings,et al.  Neighborhood detection using mutual information for the identification of cellular automata , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[100]  R. Assunção,et al.  Fast detection of arbitrarily shaped disease clusters , 2006, Statistics in medicine.

[101]  Francois Dion,et al.  Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates , 2006 .

[102]  Zhilin Li,et al.  A Multiscale Approach for Spatio‐Temporal Outlier Detection , 2006, Trans. GIS.

[103]  R. Bertini You Are the Traffic Jam: Examination of Congestion Measures , 2006 .

[104]  M. Kulldorff Tests of Spatial Randomness Adjusted for an Inhomogeneity , 2006 .

[105]  B. Singer,et al.  Controlling the False Discovery Rate: A New Application to Account for Multiple and Dependent Tests in Local Statistics of Spatial Association , 2006 .

[106]  P. Varaiya,et al.  Components of Congestion: Delay from Incidents, Special Events, Lane Closures, Weather, Potential Ramp Metering Gain, and Excess Demand , 2006 .

[107]  Daniel A. Griffith,et al.  Hidden negative spatial autocorrelation , 2006, J. Geogr. Syst..

[108]  Shiliang Sun,et al.  A bayesian network approach to traffic flow forecasting , 2006, IEEE Transactions on Intelligent Transportation Systems.

[109]  R. Eddington The Eddington transport study: the case for action: Sir Rod Eddington's advice to Government , 2006 .

[110]  Jürgen Kurths,et al.  Recurrence plots for the analysis of complex systems , 2009 .

[111]  Derya Birant,et al.  ST-DBSCAN: An algorithm for clustering spatial-temporal data , 2007, Data Knowl. Eng..

[112]  Robert T. Collins,et al.  Belief Propagation in a 3D Spatio-temporal MRF for Moving Object Detection , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[113]  Edward R. Dougherty,et al.  Model-based evaluation of clustering validation measures , 2007, Pattern Recognit..

[114]  N. Geroliminis,et al.  Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings - eScholarship , 2007 .

[115]  Jae-Gil Lee,et al.  Traffic Density-Based Discovery of Hot Routes in Road Networks , 2007, SSTD.

[116]  Hillel Bar-Gera,et al.  Evaluation of a Cellular Phone-Based System for Measurements of Traffic Speeds and Travel Times: A Case Study from Israel , 2007 .

[117]  Jianliang Xu,et al.  Clustering Moving Objects in Spatial Networks , 2007, DASFAA.

[118]  D. Wheeler A comparison of spatial clustering and cluster detection techniques for childhood leukemia incidence in Ohio, 1996 – 2003 , 2007, International journal of health geographics.

[119]  Ricardo H. C. Takahashi,et al.  A genetic algorithm for irregularly shaped spatial scan statistics , 2007, Comput. Stat. Data Anal..

[120]  Jiyoun Yeon,et al.  Differences in Freeway Capacity by Day of the Week, Time of Day, and Segment Type , 2009 .

[121]  Billy M. Williams,et al.  Traffic Management Center Use of Incident Detection Algorithms: Findings of a Nationwide Survey , 2007, IEEE Transactions on Intelligent Transportation Systems.

[122]  Pravin Varaiya Finding and Analyzing True Effect of Non-Recurrent Congestion on Mobilityand Safety , 2007 .

[123]  Yue Chen,et al.  SPANBRE: An Efficient Hierarchical Clustering Algorithm for Spatial Data with Neighborhood Relations , 2007, Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007).

[124]  Sung-Soo Kim,et al.  Modeling Spatial-Temporal Epidemics Using STBL Model , 2007, Sixth International Conference on Machine Learning and Applications (ICMLA 2007).

[125]  Devis Tuia,et al.  Scan statistics analysis of forest fire clusters , 2008 .

[126]  Shengping Zhang,et al.  Dynamic background modeling and subtraction using spatio-temporal local binary patterns , 2008, 2008 15th IEEE International Conference on Image Processing.

[127]  Jun Cai,et al.  Video-Based Automatic Incident Detection for Smart Roads: The Outdoor Environmental Challenges Regarding False Alarms , 2008, IEEE Transactions on Intelligent Transportation Systems.

[128]  Yunde Jia,et al.  Spatio-temporal patches for night background modeling by subspace learning , 2008, 2008 19th International Conference on Pattern Recognition.

[129]  Y. Sugiyama,et al.  Traffic jams without bottlenecks—experimental evidence for the physical mechanism of the formation of a jam , 2008 .

[130]  Y. Sugiyama,et al.  Traffic jams without bottlenecks — experimental , 2008 .

[131]  Tom Thomas,et al.  Detection of incidents and events in urban networks , 2008 .

[132]  Ikuho Yamada,et al.  Statistical Detection and Surveillance of Geographic Clusters , 2008 .

[133]  Chongcheng Chen,et al.  An Algorithm for Spatial Outlier Detection Based on Delaunay Triangulation , 2008, CIS.

[134]  Aryya Gangopadhyay,et al.  Spatiotemporal Neighborhood Discovery for Sensor Data , 2008, KDD Workshop on Knowledge Discovery from Sensor Data.

[135]  Lan Huang,et al.  Identifying clusters of active transportation using spatial scan statistics. , 2009, American journal of preventive medicine.

[136]  Zhang Xu,et al.  Cluster-Based Congestion Outlier Detection Method on Trajectory Data , 2009, 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery.

[137]  Daniel B. Neill,et al.  Expectation-based scan statistics for monitoring spatial time series data , 2009 .

[138]  P. Charles,et al.  Managing urban traffic congestion: an agenda for Roads Australia: discussion paper , 2009 .

[139]  A. Getis Spatial Weights Matrices , 2009 .

[140]  M. Kulldorff,et al.  International Journal of Health Geographics Open Access a Scan Statistic for Continuous Data Based on the Normal Probability Model , 2022 .

[141]  Wen-Chih Peng,et al.  Clustering Data Streams in Optimization and Geography Domains , 2009, PAKDD.

[142]  Peter A. Rogerson,et al.  GeoSurveillance: a GIS-based system for the detection and monitoring of spatial clusters , 2009, J. Geogr. Syst..

[143]  Milos Hauskrecht,et al.  Learning to detect incidents from noisily labeled data , 2009, Machine Learning.

[144]  Vijayalakshmi Atluri,et al.  Spatial outlier detection in heterogeneous neighborhoods , 2009, Intell. Data Anal..

[145]  Vijayalakshmi Atluri,et al.  Spatial neighborhood based anomaly detection in sensor datasets , 2009, Data Mining and Knowledge Discovery.

[146]  D. Ettema,et al.  Carrots versus sticks: Rewarding commuters for avoiding the rush-hour— a study of willingness to participate , 2009 .

[147]  Ciyun Lin,et al.  Support Vector Machines for Incident Detection in Urban Signalized Arterial Street Networks , 2009, 2009 International Conference on Measuring Technology and Mechatronics Automation.

[148]  Daniel B Neill,et al.  An empirical comparison of spatial scan statistics for outbreak detection , 2009, International journal of health geographics.

[149]  William R. Black,et al.  Sustainable Transportation: Problems and Solutions , 2010 .

[150]  Michael A. P. Taylor,et al.  Distributions of travel time variability on urban roads , 2010 .

[151]  Licheng Jiao,et al.  Non-local spatial spectral clustering for image segmentation , 2010, Neurocomputing.

[152]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[153]  Tao Cheng,et al.  Spatio-Temporal Clustering of Road Network Data , 2010, AICI.

[154]  M. Kulldorff,et al.  Spatial Scan Statistics Adjusted for Multiple Clusters , 2010 .

[155]  Ricardo J. G. B. Campello,et al.  Relative clustering validity criteria: A comparative overview , 2010, Stat. Anal. Data Min..

[156]  Ryan Hafen,et al.  A Visual Analytics Approach to Understanding Spatiotemporal Hotspots , 2010, IEEE Transactions on Visualization and Computer Graphics.

[157]  Paul A. Longley,et al.  Towards Real‐Time Geodemographics: Clustering Algorithm Performance for Large Multidimensional Spatial Databases , 2010, Trans. GIS.

[158]  Hui Xiong,et al.  Understanding of Internal Clustering Validation Measures , 2010, 2010 IEEE International Conference on Data Mining.

[159]  Lee D. Han,et al.  A wavelet-based freeway incident detection algorithm with adapting threshold parameters , 2011 .

[160]  Diego Legros,et al.  A spatio-temporal measure of spatial dependence : an example using real estate data , 2011 .

[161]  Wenjing Pu Analytic Relationships between Travel Time Reliability Measures , 2011 .

[162]  Shian-Shyong Tseng,et al.  Discovering Traffic Bottlenecks in an Urban Network by Spatiotemporal Data Mining on Location-Based Services , 2011, IEEE Transactions on Intelligent Transportation Systems.

[163]  M. Arezoumandi Estimation of Travel Time Reliability for Freeways Using Mean and Standard Deviation of Travel Time , 2011 .

[164]  Fei-Yue Wang,et al.  Data-Driven Intelligent Transportation Systems: A Survey , 2011, IEEE Transactions on Intelligent Transportation Systems.

[165]  Yan Shi,et al.  A general method of spatio-temporal clustering analysis , 2011, Science China Information Sciences.

[166]  Sergio A. Velastin,et al.  A Review of Computer Vision Techniques for the Analysis of Urban Traffic , 2011, IEEE Transactions on Intelligent Transportation Systems.

[167]  Thomas Seidl,et al.  An effective evaluation measure for clustering on evolving data streams , 2011, KDD.

[168]  Shashi Shekhar,et al.  Identifying patterns in spatial information: A survey of methods , 2011, WIREs Data Mining Knowl. Discov..

[169]  M. Charlton,et al.  An Assessment of the Effectiveness of Multiple Hypothesis Testing for Geographical Anomaly Detection , 2011 .

[170]  M. Türkeş,et al.  Use of the spectral clustering to determine coherent precipitation regions in Turkey for the period 1929–2007 , 2011 .

[171]  Chung-Cheng Lu,et al.  A bayesian dynamic linear model approach for real-time short-term freeway travel time prediction , 2011 .

[172]  B Anbaroglu,et al.  Where and when does the traffic congestion begin and end? A spatio-temporal clustering approach to detect congestion , 2011 .

[173]  Bhaskaran Raman,et al.  Kyun queue: a sensor network system to monitor road traffic queues , 2012, SenSys '12.

[174]  Teemu Tiainen,et al.  Comparative study of multiple criteria decision making methods for building design , 2012, Adv. Eng. Informatics.

[175]  Ziyou Gao,et al.  Control Strategies for Dispersing Incident-Based Traffic Jams in Two-Way Grid Networks , 2012, IEEE Transactions on Intelligent Transportation Systems.

[176]  Lakshminarayanan Subramanian,et al.  Road traffic congestion in the developing world , 2012, ACM DEV '12.

[177]  Tao Cheng,et al.  Non-parametric regression for space-time forecasting under missing data , 2012, Comput. Environ. Urban Syst..

[178]  Jiaqiu Wang,et al.  Spatio-temporal autocorrelation of road network data , 2012, J. Geogr. Syst..

[179]  Isabelle Guyon,et al.  Clustering: Science or Art? , 2009, ICML Unsupervised and Transfer Learning.

[180]  Olatz Arbelaitz,et al.  An extensive comparative study of cluster validity indices , 2013, Pattern Recognit..

[181]  Tao Cheng,et al.  How tube strikes affect macroscopic and link travel times in London , 2013 .

[182]  Pemetaan Jumlah Balita,et al.  Spatial Scan Statistic , 2014, Encyclopedia of Social Network Analysis and Mining.

[183]  Harold J. Paynet Freeway Incident-Detection Algorithms Based on Decision Trees With States , 2022 .